The semi-inclusive jet function in SCET and small radius resummation for inclusive jet production

A bstract We introduce a new kind of jet function: the semi-inclusive jet function J i ( z, ω J , μ ), which describes how a parton i is transformed into a jet with a jet radius R and energy fraction z = ω J /ω , with ω J and ω being the large light-cone momentum component of the jet and the corresp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of high energy physics 2016-10, Vol.2016 (10), p.1-35, Article 125
Hauptverfasser: Kang, Zhong-Bo, Ringer, Felix, Vitev, Ivan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 35
container_issue 10
container_start_page 1
container_title The journal of high energy physics
container_volume 2016
creator Kang, Zhong-Bo
Ringer, Felix
Vitev, Ivan
description A bstract We introduce a new kind of jet function: the semi-inclusive jet function J i ( z, ω J , μ ), which describes how a parton i is transformed into a jet with a jet radius R and energy fraction z = ω J /ω , with ω J and ω being the large light-cone momentum component of the jet and the corresponding parton i that initiates the jet, respectively. Within the framework of Soft Collinear Effective Theory (SCET) we calculate both J q ( z, ω J , μ ) and J g ( z, ω J , μ ) to the next-to-leading order (NLO) for cone and anti-k T algorithms. We demonstrate that the renormalization group (RG) equations for J i ( z, ω J , μ ) follow exactly the usual DGLAP evolution, which can be used to perform the ln R resummation for inclusive jet cross sections with a small jet radius R . We clarify the difference between our RG equations for J i ( z, ω J , μ ) and those for the so-called unmeasured jet functions J i ( ω J , μ ), widely used in SCET for exclusive jet production. Finally, we present applications of the new semi-inclusive jet functions to inclusive jet production in e + e − and pp collisions. We demonstrate that single inclusive jet production in these collisions shares the same short-distance hard functions as single inclusive hadron production, with only the fragmentation functions D i h ( z ,  μ ) replaced by J i ( z, ω J , μ ). This can facilitate more efficient higher-order analytical computations of jet cross sections. We further match our ln R resummation at both LL R and NLL R to fixed NLO results and present the phenomenological implications for single inclusive jet production at the LHC.
doi_str_mv 10.1007/JHEP10(2016)125
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1855390240</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4313389151</sourcerecordid><originalsourceid>FETCH-LOGICAL-c520t-ad0921df0b1761ece4ea49508b6da4b0345d140980ab112ddf3ed1c260adfba23</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKtnrwEv9bB2JvuZo5RqlYKC9Ryym6ym7GZr0gj-e7ddD1XwNHN4nneGl5BLhBsEyKePi_kzwoQBZtfI0iMyQmA8KpKcHx_sp-TM-zUApshhROTqXVOvWxMZWzXBm09N13pL62CrreksNZa-zOYrKq2ivpVNQ51UJnjqtA9tK_dQ3Tn629-4ToV9wjk5qWXj9cXPHJPXu_lqtoiWT_cPs9tlVKUMtpFUwBmqGkrMM9SVTrRMeApFmSmZlBAnqcIEeAGyRGRK1bFWWLEMpKpLyeIxmQy5_emPoP1WtMZXummk1V3wAos0jTmwBHr06g-67oKz_Xc9leU8ZkW2o6YDVbnOe6drsXGmle5LIIhd5WKoXOwqF33lvQGD4XvSvml3kPuP8g1kvIOb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1867932860</pqid></control><display><type>article</type><title>The semi-inclusive jet function in SCET and small radius resummation for inclusive jet production</title><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Kang, Zhong-Bo ; Ringer, Felix ; Vitev, Ivan</creator><creatorcontrib>Kang, Zhong-Bo ; Ringer, Felix ; Vitev, Ivan</creatorcontrib><description>A bstract We introduce a new kind of jet function: the semi-inclusive jet function J i ( z, ω J , μ ), which describes how a parton i is transformed into a jet with a jet radius R and energy fraction z = ω J /ω , with ω J and ω being the large light-cone momentum component of the jet and the corresponding parton i that initiates the jet, respectively. Within the framework of Soft Collinear Effective Theory (SCET) we calculate both J q ( z, ω J , μ ) and J g ( z, ω J , μ ) to the next-to-leading order (NLO) for cone and anti-k T algorithms. We demonstrate that the renormalization group (RG) equations for J i ( z, ω J , μ ) follow exactly the usual DGLAP evolution, which can be used to perform the ln R resummation for inclusive jet cross sections with a small jet radius R . We clarify the difference between our RG equations for J i ( z, ω J , μ ) and those for the so-called unmeasured jet functions J i ( ω J , μ ), widely used in SCET for exclusive jet production. Finally, we present applications of the new semi-inclusive jet functions to inclusive jet production in e + e − and pp collisions. We demonstrate that single inclusive jet production in these collisions shares the same short-distance hard functions as single inclusive hadron production, with only the fragmentation functions D i h ( z ,  μ ) replaced by J i ( z, ω J , μ ). This can facilitate more efficient higher-order analytical computations of jet cross sections. We further match our ln R resummation at both LL R and NLL R to fixed NLO results and present the phenomenological implications for single inclusive jet production at the LHC.</description><identifier>ISSN: 1029-8479</identifier><identifier>EISSN: 1029-8479</identifier><identifier>DOI: 10.1007/JHEP10(2016)125</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Classical and Quantum Gravitation ; Collisions ; Computational efficiency ; Cross sections ; Elementary Particles ; Evolution ; Hadrons ; High energy physics ; Mathematical analysis ; Mathematical models ; Partons ; Physics ; Physics and Astronomy ; Quantum Field Theories ; Quantum Field Theory ; Quantum Physics ; Regular Article - Theoretical Physics ; Relativity Theory ; String Theory</subject><ispartof>The journal of high energy physics, 2016-10, Vol.2016 (10), p.1-35, Article 125</ispartof><rights>The Author(s) 2016</rights><rights>Journal of High Energy Physics is a copyright of Springer, 2016.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c520t-ad0921df0b1761ece4ea49508b6da4b0345d140980ab112ddf3ed1c260adfba23</citedby><cites>FETCH-LOGICAL-c520t-ad0921df0b1761ece4ea49508b6da4b0345d140980ab112ddf3ed1c260adfba23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/JHEP10(2016)125$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://doi.org/10.1007/JHEP10(2016)125$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,27923,27924,41119,42188,51575</link.rule.ids></links><search><creatorcontrib>Kang, Zhong-Bo</creatorcontrib><creatorcontrib>Ringer, Felix</creatorcontrib><creatorcontrib>Vitev, Ivan</creatorcontrib><title>The semi-inclusive jet function in SCET and small radius resummation for inclusive jet production</title><title>The journal of high energy physics</title><addtitle>J. High Energ. Phys</addtitle><description>A bstract We introduce a new kind of jet function: the semi-inclusive jet function J i ( z, ω J , μ ), which describes how a parton i is transformed into a jet with a jet radius R and energy fraction z = ω J /ω , with ω J and ω being the large light-cone momentum component of the jet and the corresponding parton i that initiates the jet, respectively. Within the framework of Soft Collinear Effective Theory (SCET) we calculate both J q ( z, ω J , μ ) and J g ( z, ω J , μ ) to the next-to-leading order (NLO) for cone and anti-k T algorithms. We demonstrate that the renormalization group (RG) equations for J i ( z, ω J , μ ) follow exactly the usual DGLAP evolution, which can be used to perform the ln R resummation for inclusive jet cross sections with a small jet radius R . We clarify the difference between our RG equations for J i ( z, ω J , μ ) and those for the so-called unmeasured jet functions J i ( ω J , μ ), widely used in SCET for exclusive jet production. Finally, we present applications of the new semi-inclusive jet functions to inclusive jet production in e + e − and pp collisions. We demonstrate that single inclusive jet production in these collisions shares the same short-distance hard functions as single inclusive hadron production, with only the fragmentation functions D i h ( z ,  μ ) replaced by J i ( z, ω J , μ ). This can facilitate more efficient higher-order analytical computations of jet cross sections. We further match our ln R resummation at both LL R and NLL R to fixed NLO results and present the phenomenological implications for single inclusive jet production at the LHC.</description><subject>Classical and Quantum Gravitation</subject><subject>Collisions</subject><subject>Computational efficiency</subject><subject>Cross sections</subject><subject>Elementary Particles</subject><subject>Evolution</subject><subject>Hadrons</subject><subject>High energy physics</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Partons</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Field Theories</subject><subject>Quantum Field Theory</subject><subject>Quantum Physics</subject><subject>Regular Article - Theoretical Physics</subject><subject>Relativity Theory</subject><subject>String Theory</subject><issn>1029-8479</issn><issn>1029-8479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kE1LAzEQhoMoWKtnrwEv9bB2JvuZo5RqlYKC9Ryym6ym7GZr0gj-e7ddD1XwNHN4nneGl5BLhBsEyKePi_kzwoQBZtfI0iMyQmA8KpKcHx_sp-TM-zUApshhROTqXVOvWxMZWzXBm09N13pL62CrreksNZa-zOYrKq2ivpVNQ51UJnjqtA9tK_dQ3Tn629-4ToV9wjk5qWXj9cXPHJPXu_lqtoiWT_cPs9tlVKUMtpFUwBmqGkrMM9SVTrRMeApFmSmZlBAnqcIEeAGyRGRK1bFWWLEMpKpLyeIxmQy5_emPoP1WtMZXummk1V3wAos0jTmwBHr06g-67oKz_Xc9leU8ZkW2o6YDVbnOe6drsXGmle5LIIhd5WKoXOwqF33lvQGD4XvSvml3kPuP8g1kvIOb</recordid><startdate>20161001</startdate><enddate>20161001</enddate><creator>Kang, Zhong-Bo</creator><creator>Ringer, Felix</creator><creator>Vitev, Ivan</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20161001</creationdate><title>The semi-inclusive jet function in SCET and small radius resummation for inclusive jet production</title><author>Kang, Zhong-Bo ; Ringer, Felix ; Vitev, Ivan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c520t-ad0921df0b1761ece4ea49508b6da4b0345d140980ab112ddf3ed1c260adfba23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Classical and Quantum Gravitation</topic><topic>Collisions</topic><topic>Computational efficiency</topic><topic>Cross sections</topic><topic>Elementary Particles</topic><topic>Evolution</topic><topic>Hadrons</topic><topic>High energy physics</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Partons</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Field Theories</topic><topic>Quantum Field Theory</topic><topic>Quantum Physics</topic><topic>Regular Article - Theoretical Physics</topic><topic>Relativity Theory</topic><topic>String Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kang, Zhong-Bo</creatorcontrib><creatorcontrib>Ringer, Felix</creatorcontrib><creatorcontrib>Vitev, Ivan</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The journal of high energy physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kang, Zhong-Bo</au><au>Ringer, Felix</au><au>Vitev, Ivan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The semi-inclusive jet function in SCET and small radius resummation for inclusive jet production</atitle><jtitle>The journal of high energy physics</jtitle><stitle>J. High Energ. Phys</stitle><date>2016-10-01</date><risdate>2016</risdate><volume>2016</volume><issue>10</issue><spage>1</spage><epage>35</epage><pages>1-35</pages><artnum>125</artnum><issn>1029-8479</issn><eissn>1029-8479</eissn><abstract>A bstract We introduce a new kind of jet function: the semi-inclusive jet function J i ( z, ω J , μ ), which describes how a parton i is transformed into a jet with a jet radius R and energy fraction z = ω J /ω , with ω J and ω being the large light-cone momentum component of the jet and the corresponding parton i that initiates the jet, respectively. Within the framework of Soft Collinear Effective Theory (SCET) we calculate both J q ( z, ω J , μ ) and J g ( z, ω J , μ ) to the next-to-leading order (NLO) for cone and anti-k T algorithms. We demonstrate that the renormalization group (RG) equations for J i ( z, ω J , μ ) follow exactly the usual DGLAP evolution, which can be used to perform the ln R resummation for inclusive jet cross sections with a small jet radius R . We clarify the difference between our RG equations for J i ( z, ω J , μ ) and those for the so-called unmeasured jet functions J i ( ω J , μ ), widely used in SCET for exclusive jet production. Finally, we present applications of the new semi-inclusive jet functions to inclusive jet production in e + e − and pp collisions. We demonstrate that single inclusive jet production in these collisions shares the same short-distance hard functions as single inclusive hadron production, with only the fragmentation functions D i h ( z ,  μ ) replaced by J i ( z, ω J , μ ). This can facilitate more efficient higher-order analytical computations of jet cross sections. We further match our ln R resummation at both LL R and NLL R to fixed NLO results and present the phenomenological implications for single inclusive jet production at the LHC.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/JHEP10(2016)125</doi><tpages>35</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1029-8479
ispartof The journal of high energy physics, 2016-10, Vol.2016 (10), p.1-35, Article 125
issn 1029-8479
1029-8479
language eng
recordid cdi_proquest_miscellaneous_1855390240
source DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Classical and Quantum Gravitation
Collisions
Computational efficiency
Cross sections
Elementary Particles
Evolution
Hadrons
High energy physics
Mathematical analysis
Mathematical models
Partons
Physics
Physics and Astronomy
Quantum Field Theories
Quantum Field Theory
Quantum Physics
Regular Article - Theoretical Physics
Relativity Theory
String Theory
title The semi-inclusive jet function in SCET and small radius resummation for inclusive jet production
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T23%3A38%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20semi-inclusive%20jet%20function%20in%20SCET%20and%20small%20radius%20resummation%20for%20inclusive%20jet%20production&rft.jtitle=The%20journal%20of%20high%20energy%20physics&rft.au=Kang,%20Zhong-Bo&rft.date=2016-10-01&rft.volume=2016&rft.issue=10&rft.spage=1&rft.epage=35&rft.pages=1-35&rft.artnum=125&rft.issn=1029-8479&rft.eissn=1029-8479&rft_id=info:doi/10.1007/JHEP10(2016)125&rft_dat=%3Cproquest_cross%3E4313389151%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1867932860&rft_id=info:pmid/&rfr_iscdi=true