Hybrid local diffusion maps and improved cuckoo search algorithm for multiclass dataset analysis

Data clustering is a meaningful tool that can, help people classify mixed data automatically. With rapid technological development, data in modern applications become large scale and high dimensional. Some original clustering methods are not suitable for complicated datasets. To improve the performa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neurocomputing (Amsterdam) 2016-05, Vol.189, p.106-116
Hauptverfasser: Jia, Bo, Yu, Biting, Wu, Qi, Yang, Xinshe, Wei, Chuanfeng, Law, Rob, Fu, Shan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 116
container_issue
container_start_page 106
container_title Neurocomputing (Amsterdam)
container_volume 189
creator Jia, Bo
Yu, Biting
Wu, Qi
Yang, Xinshe
Wei, Chuanfeng
Law, Rob
Fu, Shan
description Data clustering is a meaningful tool that can, help people classify mixed data automatically. With rapid technological development, data in modern applications become large scale and high dimensional. Some original clustering methods are not suitable for complicated datasets. To improve the performance of the popular kernel fuzzy C-means (KFCM), this study proposed a local density adaptive diffusion maps (LDM) technique to obtain a reliable similarity description and dimensionality reduction. To find the valid cluster centroids of the dataset, this study also proposed an improved cuckoo search (ICS) to optimize the unknown parameters of the KFCM model. The ICS algorithm utilized quaternions to represent individuals who will be optimized. Variable step length of Lévy flights and discovery probability were also proposed, which were adjusted by the evolutional ratio of the cuckoo search process. To verify the availability of the ICS, 5 benchmark functions were tested. Finally, the proposed hybrid ICS and LDM based on KFCM (ICS-LDM-KFCM) was used to identify 4 standard artificial and 6 real world datasets. Compared with other clustering methods, the proposed method obtained more accurate results. This method is verified to be more suitable for complicated datasets with large number of attributes and clusters.
doi_str_mv 10.1016/j.neucom.2015.12.066
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1855387039</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925231215020378</els_id><sourcerecordid>1855387039</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-2615399d3603370ade506017a3807f2dc259482fb87fc94cf3ea2212a7544d453</originalsourceid><addsrcrecordid>eNp9kDtPwzAUhS0EEqXwDxg8siT4ESfxgoQqoEiVWGA2rh_UxYmLb1Kp_55UZWa6y_mOzv0QuqWkpITW99uyd6NJXckIFSVlJanrMzSjbcOKlrX1OZoRyUTBOGWX6ApgSwhtKJMz9Lk8rHOwOCajI7bB-xFC6nGnd4B1b3HodjntncVmNN8pYXA6mw3W8SvlMGw67FPG3RiHYKIGwFYPGtwwsToeIMA1uvA6grv5u3P08fz0vlgWq7eX18XjqjAVkUPBaiq4lJbXhPOGaOsEqaeRmrek8cwaJmTVMr9uG29kZTx3mjHKdCOqylaCz9HdqXea-zM6GFQXwLgYde_SCIq2QvC2IVxO0eoUNTkBZOfVLodO54OiRB2Fqq06CVVHoYoyNQmdsIcT5qY39sFlBSa43jgbsjODsin8X_AL3RqBYA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1855387039</pqid></control><display><type>article</type><title>Hybrid local diffusion maps and improved cuckoo search algorithm for multiclass dataset analysis</title><source>Access via ScienceDirect (Elsevier)</source><creator>Jia, Bo ; Yu, Biting ; Wu, Qi ; Yang, Xinshe ; Wei, Chuanfeng ; Law, Rob ; Fu, Shan</creator><creatorcontrib>Jia, Bo ; Yu, Biting ; Wu, Qi ; Yang, Xinshe ; Wei, Chuanfeng ; Law, Rob ; Fu, Shan</creatorcontrib><description>Data clustering is a meaningful tool that can, help people classify mixed data automatically. With rapid technological development, data in modern applications become large scale and high dimensional. Some original clustering methods are not suitable for complicated datasets. To improve the performance of the popular kernel fuzzy C-means (KFCM), this study proposed a local density adaptive diffusion maps (LDM) technique to obtain a reliable similarity description and dimensionality reduction. To find the valid cluster centroids of the dataset, this study also proposed an improved cuckoo search (ICS) to optimize the unknown parameters of the KFCM model. The ICS algorithm utilized quaternions to represent individuals who will be optimized. Variable step length of Lévy flights and discovery probability were also proposed, which were adjusted by the evolutional ratio of the cuckoo search process. To verify the availability of the ICS, 5 benchmark functions were tested. Finally, the proposed hybrid ICS and LDM based on KFCM (ICS-LDM-KFCM) was used to identify 4 standard artificial and 6 real world datasets. Compared with other clustering methods, the proposed method obtained more accurate results. This method is verified to be more suitable for complicated datasets with large number of attributes and clusters.</description><identifier>ISSN: 0925-2312</identifier><identifier>EISSN: 1872-8286</identifier><identifier>DOI: 10.1016/j.neucom.2015.12.066</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Algorithms ; Clustering ; Clusters ; Cuckoo search ; Diffusion ; Diffusion maps ; Fuzzy ; Kernel fuzzy C-means ; Mathematical models ; Quaternion ; Searching</subject><ispartof>Neurocomputing (Amsterdam), 2016-05, Vol.189, p.106-116</ispartof><rights>2016 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-2615399d3603370ade506017a3807f2dc259482fb87fc94cf3ea2212a7544d453</citedby><cites>FETCH-LOGICAL-c409t-2615399d3603370ade506017a3807f2dc259482fb87fc94cf3ea2212a7544d453</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.neucom.2015.12.066$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Jia, Bo</creatorcontrib><creatorcontrib>Yu, Biting</creatorcontrib><creatorcontrib>Wu, Qi</creatorcontrib><creatorcontrib>Yang, Xinshe</creatorcontrib><creatorcontrib>Wei, Chuanfeng</creatorcontrib><creatorcontrib>Law, Rob</creatorcontrib><creatorcontrib>Fu, Shan</creatorcontrib><title>Hybrid local diffusion maps and improved cuckoo search algorithm for multiclass dataset analysis</title><title>Neurocomputing (Amsterdam)</title><description>Data clustering is a meaningful tool that can, help people classify mixed data automatically. With rapid technological development, data in modern applications become large scale and high dimensional. Some original clustering methods are not suitable for complicated datasets. To improve the performance of the popular kernel fuzzy C-means (KFCM), this study proposed a local density adaptive diffusion maps (LDM) technique to obtain a reliable similarity description and dimensionality reduction. To find the valid cluster centroids of the dataset, this study also proposed an improved cuckoo search (ICS) to optimize the unknown parameters of the KFCM model. The ICS algorithm utilized quaternions to represent individuals who will be optimized. Variable step length of Lévy flights and discovery probability were also proposed, which were adjusted by the evolutional ratio of the cuckoo search process. To verify the availability of the ICS, 5 benchmark functions were tested. Finally, the proposed hybrid ICS and LDM based on KFCM (ICS-LDM-KFCM) was used to identify 4 standard artificial and 6 real world datasets. Compared with other clustering methods, the proposed method obtained more accurate results. This method is verified to be more suitable for complicated datasets with large number of attributes and clusters.</description><subject>Algorithms</subject><subject>Clustering</subject><subject>Clusters</subject><subject>Cuckoo search</subject><subject>Diffusion</subject><subject>Diffusion maps</subject><subject>Fuzzy</subject><subject>Kernel fuzzy C-means</subject><subject>Mathematical models</subject><subject>Quaternion</subject><subject>Searching</subject><issn>0925-2312</issn><issn>1872-8286</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kDtPwzAUhS0EEqXwDxg8siT4ESfxgoQqoEiVWGA2rh_UxYmLb1Kp_55UZWa6y_mOzv0QuqWkpITW99uyd6NJXckIFSVlJanrMzSjbcOKlrX1OZoRyUTBOGWX6ApgSwhtKJMz9Lk8rHOwOCajI7bB-xFC6nGnd4B1b3HodjntncVmNN8pYXA6mw3W8SvlMGw67FPG3RiHYKIGwFYPGtwwsToeIMA1uvA6grv5u3P08fz0vlgWq7eX18XjqjAVkUPBaiq4lJbXhPOGaOsEqaeRmrek8cwaJmTVMr9uG29kZTx3mjHKdCOqylaCz9HdqXea-zM6GFQXwLgYde_SCIq2QvC2IVxO0eoUNTkBZOfVLodO54OiRB2Fqq06CVVHoYoyNQmdsIcT5qY39sFlBSa43jgbsjODsin8X_AL3RqBYA</recordid><startdate>20160512</startdate><enddate>20160512</enddate><creator>Jia, Bo</creator><creator>Yu, Biting</creator><creator>Wu, Qi</creator><creator>Yang, Xinshe</creator><creator>Wei, Chuanfeng</creator><creator>Law, Rob</creator><creator>Fu, Shan</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20160512</creationdate><title>Hybrid local diffusion maps and improved cuckoo search algorithm for multiclass dataset analysis</title><author>Jia, Bo ; Yu, Biting ; Wu, Qi ; Yang, Xinshe ; Wei, Chuanfeng ; Law, Rob ; Fu, Shan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-2615399d3603370ade506017a3807f2dc259482fb87fc94cf3ea2212a7544d453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Clustering</topic><topic>Clusters</topic><topic>Cuckoo search</topic><topic>Diffusion</topic><topic>Diffusion maps</topic><topic>Fuzzy</topic><topic>Kernel fuzzy C-means</topic><topic>Mathematical models</topic><topic>Quaternion</topic><topic>Searching</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jia, Bo</creatorcontrib><creatorcontrib>Yu, Biting</creatorcontrib><creatorcontrib>Wu, Qi</creatorcontrib><creatorcontrib>Yang, Xinshe</creatorcontrib><creatorcontrib>Wei, Chuanfeng</creatorcontrib><creatorcontrib>Law, Rob</creatorcontrib><creatorcontrib>Fu, Shan</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Neurocomputing (Amsterdam)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jia, Bo</au><au>Yu, Biting</au><au>Wu, Qi</au><au>Yang, Xinshe</au><au>Wei, Chuanfeng</au><au>Law, Rob</au><au>Fu, Shan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hybrid local diffusion maps and improved cuckoo search algorithm for multiclass dataset analysis</atitle><jtitle>Neurocomputing (Amsterdam)</jtitle><date>2016-05-12</date><risdate>2016</risdate><volume>189</volume><spage>106</spage><epage>116</epage><pages>106-116</pages><issn>0925-2312</issn><eissn>1872-8286</eissn><abstract>Data clustering is a meaningful tool that can, help people classify mixed data automatically. With rapid technological development, data in modern applications become large scale and high dimensional. Some original clustering methods are not suitable for complicated datasets. To improve the performance of the popular kernel fuzzy C-means (KFCM), this study proposed a local density adaptive diffusion maps (LDM) technique to obtain a reliable similarity description and dimensionality reduction. To find the valid cluster centroids of the dataset, this study also proposed an improved cuckoo search (ICS) to optimize the unknown parameters of the KFCM model. The ICS algorithm utilized quaternions to represent individuals who will be optimized. Variable step length of Lévy flights and discovery probability were also proposed, which were adjusted by the evolutional ratio of the cuckoo search process. To verify the availability of the ICS, 5 benchmark functions were tested. Finally, the proposed hybrid ICS and LDM based on KFCM (ICS-LDM-KFCM) was used to identify 4 standard artificial and 6 real world datasets. Compared with other clustering methods, the proposed method obtained more accurate results. This method is verified to be more suitable for complicated datasets with large number of attributes and clusters.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.neucom.2015.12.066</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0925-2312
ispartof Neurocomputing (Amsterdam), 2016-05, Vol.189, p.106-116
issn 0925-2312
1872-8286
language eng
recordid cdi_proquest_miscellaneous_1855387039
source Access via ScienceDirect (Elsevier)
subjects Algorithms
Clustering
Clusters
Cuckoo search
Diffusion
Diffusion maps
Fuzzy
Kernel fuzzy C-means
Mathematical models
Quaternion
Searching
title Hybrid local diffusion maps and improved cuckoo search algorithm for multiclass dataset analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T18%3A35%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hybrid%20local%20diffusion%20maps%20and%20improved%20cuckoo%20search%20algorithm%20for%20multiclass%20dataset%20analysis&rft.jtitle=Neurocomputing%20(Amsterdam)&rft.au=Jia,%20Bo&rft.date=2016-05-12&rft.volume=189&rft.spage=106&rft.epage=116&rft.pages=106-116&rft.issn=0925-2312&rft.eissn=1872-8286&rft_id=info:doi/10.1016/j.neucom.2015.12.066&rft_dat=%3Cproquest_cross%3E1855387039%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1855387039&rft_id=info:pmid/&rft_els_id=S0925231215020378&rfr_iscdi=true