Universal Associated Legendre Polynomials and Some Useful Definite Integrals
We first introduce the universal associated Legendre polynomials, which are occurred in studying the non-central fields such as the single ring-shaped potential and then present definite integrals I sub(A) super( plus or minus )(a, tau ) = [int] sub(-1) super(+1) x super(a)[P sub(l') super(m...
Gespeichert in:
Veröffentlicht in: | Communications in theoretical physics 2016-08, Vol.66 (2), p.158-162 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 162 |
---|---|
container_issue | 2 |
container_start_page | 158 |
container_title | Communications in theoretical physics |
container_volume | 66 |
creator | Chen, Chang-Yuan You, Yuan Lu, Fa-Lin Sun, Dong-Sheng Dong, Shi-Hai |
description | We first introduce the universal associated Legendre polynomials, which are occurred in studying the non-central fields such as the single ring-shaped potential and then present definite integrals I sub(A) super( plus or minus )(a, tau ) = [int] sub(-1) super(+1) x super(a)[P sub(l') super(m') (x)] super(2)/(1 plus or minus x) super( tau ) dx, a = 0, 1, 2, 3, 4, 5, 6, tau = 1, 2, 3, I sub(B)(b, sigma ) = [int] sub(-1) super(+1) x super(b)[P sub(l') super(m') (x)] super(2)/(1 - x super(2)) super( sigma ) dx, b = 0, 2, 4, 6, 8, sigma = 1, 2, 3, and I sub(C) super( plus or minus )(c, Kappa ) = [int] sub(-1) super(+1) x super(c)[P sub(l') super(m') (x)] super(2)/[(1 - x super(2)) super( Kappa ) (1 plus or minus x)] dx, c = 0, 1, 2, 3, 4, 5, 6, 7, 8, Kappa = 1, 2. The superindices " plus or minus " in I sub(A) super( plus or minus )(a, tau ) and I sub(C) super( plus or minus ) (c, Kappa ) correspond to those of the factor (1 plus or minus x) involved in weight functions. The formulas obtained in this work and also those for integer quantum numbers l' and m' are very useful and unavailable in classic handbooks. |
doi_str_mv | 10.1088/0253-6102/66/2/158 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1855386668</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1855386668</sourcerecordid><originalsourceid>FETCH-LOGICAL-c280t-d0ea11f3657b8f67cf93941b0a9c9dc017471ab85b73e5d46c2f522f970f71083</originalsourceid><addsrcrecordid>eNo9kE9LwzAchoMoOKdfwFOOXmqTtPnT45g6BwUF3Tmk6S8j0qYz6YR9e1smnp7Lwwvvg9A9JY-UKJUTxotMUMJyIXKWU64u0IJyybKqrMpLtPgXrtFNSl-EECYFXaB6F_wPxGQ6vEppsN6M0OIa9hDaCPh96E5h6L3pEjahxR9DD3iXwB07_ATOBz8C3oYR9nFSbtGVmwB3f1yi3cvz5_o1q9822_WqzixTZMxaAoZSVwguG-WEtK4qqpI2xFS2ai2hspTUNIo3sgDelsIyxxlzlSROTneLJXo47x7i8H2ENOreJwtdZwIMx6Sp4rxQQohZZWfVxiGlCE4fou9NPGlK9JxOz2X0XEYLoZme0hW_qVhhBg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1855386668</pqid></control><display><type>article</type><title>Universal Associated Legendre Polynomials and Some Useful Definite Integrals</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><source>Alma/SFX Local Collection</source><creator>Chen, Chang-Yuan ; You, Yuan ; Lu, Fa-Lin ; Sun, Dong-Sheng ; Dong, Shi-Hai</creator><creatorcontrib>Chen, Chang-Yuan ; You, Yuan ; Lu, Fa-Lin ; Sun, Dong-Sheng ; Dong, Shi-Hai</creatorcontrib><description>We first introduce the universal associated Legendre polynomials, which are occurred in studying the non-central fields such as the single ring-shaped potential and then present definite integrals I sub(A) super( plus or minus )(a, tau ) = [int] sub(-1) super(+1) x super(a)[P sub(l') super(m') (x)] super(2)/(1 plus or minus x) super( tau ) dx, a = 0, 1, 2, 3, 4, 5, 6, tau = 1, 2, 3, I sub(B)(b, sigma ) = [int] sub(-1) super(+1) x super(b)[P sub(l') super(m') (x)] super(2)/(1 - x super(2)) super( sigma ) dx, b = 0, 2, 4, 6, 8, sigma = 1, 2, 3, and I sub(C) super( plus or minus )(c, Kappa ) = [int] sub(-1) super(+1) x super(c)[P sub(l') super(m') (x)] super(2)/[(1 - x super(2)) super( Kappa ) (1 plus or minus x)] dx, c = 0, 1, 2, 3, 4, 5, 6, 7, 8, Kappa = 1, 2. The superindices " plus or minus " in I sub(A) super( plus or minus )(a, tau ) and I sub(C) super( plus or minus ) (c, Kappa ) correspond to those of the factor (1 plus or minus x) involved in weight functions. The formulas obtained in this work and also those for integer quantum numbers l' and m' are very useful and unavailable in classic handbooks.</description><identifier>ISSN: 0253-6102</identifier><identifier>EISSN: 1572-9494</identifier><identifier>DOI: 10.1088/0253-6102/66/2/158</identifier><language>eng</language><subject>Handbooks ; Integers ; Integrals ; Polynomials ; Quantum numbers ; Theoretical physics ; Weight function</subject><ispartof>Communications in theoretical physics, 2016-08, Vol.66 (2), p.158-162</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c280t-d0ea11f3657b8f67cf93941b0a9c9dc017471ab85b73e5d46c2f522f970f71083</citedby><cites>FETCH-LOGICAL-c280t-d0ea11f3657b8f67cf93941b0a9c9dc017471ab85b73e5d46c2f522f970f71083</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Chen, Chang-Yuan</creatorcontrib><creatorcontrib>You, Yuan</creatorcontrib><creatorcontrib>Lu, Fa-Lin</creatorcontrib><creatorcontrib>Sun, Dong-Sheng</creatorcontrib><creatorcontrib>Dong, Shi-Hai</creatorcontrib><title>Universal Associated Legendre Polynomials and Some Useful Definite Integrals</title><title>Communications in theoretical physics</title><description>We first introduce the universal associated Legendre polynomials, which are occurred in studying the non-central fields such as the single ring-shaped potential and then present definite integrals I sub(A) super( plus or minus )(a, tau ) = [int] sub(-1) super(+1) x super(a)[P sub(l') super(m') (x)] super(2)/(1 plus or minus x) super( tau ) dx, a = 0, 1, 2, 3, 4, 5, 6, tau = 1, 2, 3, I sub(B)(b, sigma ) = [int] sub(-1) super(+1) x super(b)[P sub(l') super(m') (x)] super(2)/(1 - x super(2)) super( sigma ) dx, b = 0, 2, 4, 6, 8, sigma = 1, 2, 3, and I sub(C) super( plus or minus )(c, Kappa ) = [int] sub(-1) super(+1) x super(c)[P sub(l') super(m') (x)] super(2)/[(1 - x super(2)) super( Kappa ) (1 plus or minus x)] dx, c = 0, 1, 2, 3, 4, 5, 6, 7, 8, Kappa = 1, 2. The superindices " plus or minus " in I sub(A) super( plus or minus )(a, tau ) and I sub(C) super( plus or minus ) (c, Kappa ) correspond to those of the factor (1 plus or minus x) involved in weight functions. The formulas obtained in this work and also those for integer quantum numbers l' and m' are very useful and unavailable in classic handbooks.</description><subject>Handbooks</subject><subject>Integers</subject><subject>Integrals</subject><subject>Polynomials</subject><subject>Quantum numbers</subject><subject>Theoretical physics</subject><subject>Weight function</subject><issn>0253-6102</issn><issn>1572-9494</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNo9kE9LwzAchoMoOKdfwFOOXmqTtPnT45g6BwUF3Tmk6S8j0qYz6YR9e1smnp7Lwwvvg9A9JY-UKJUTxotMUMJyIXKWU64u0IJyybKqrMpLtPgXrtFNSl-EECYFXaB6F_wPxGQ6vEppsN6M0OIa9hDaCPh96E5h6L3pEjahxR9DD3iXwB07_ATOBz8C3oYR9nFSbtGVmwB3f1yi3cvz5_o1q9822_WqzixTZMxaAoZSVwguG-WEtK4qqpI2xFS2ai2hspTUNIo3sgDelsIyxxlzlSROTneLJXo47x7i8H2ENOreJwtdZwIMx6Sp4rxQQohZZWfVxiGlCE4fou9NPGlK9JxOz2X0XEYLoZme0hW_qVhhBg</recordid><startdate>20160801</startdate><enddate>20160801</enddate><creator>Chen, Chang-Yuan</creator><creator>You, Yuan</creator><creator>Lu, Fa-Lin</creator><creator>Sun, Dong-Sheng</creator><creator>Dong, Shi-Hai</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20160801</creationdate><title>Universal Associated Legendre Polynomials and Some Useful Definite Integrals</title><author>Chen, Chang-Yuan ; You, Yuan ; Lu, Fa-Lin ; Sun, Dong-Sheng ; Dong, Shi-Hai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c280t-d0ea11f3657b8f67cf93941b0a9c9dc017471ab85b73e5d46c2f522f970f71083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Handbooks</topic><topic>Integers</topic><topic>Integrals</topic><topic>Polynomials</topic><topic>Quantum numbers</topic><topic>Theoretical physics</topic><topic>Weight function</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Chang-Yuan</creatorcontrib><creatorcontrib>You, Yuan</creatorcontrib><creatorcontrib>Lu, Fa-Lin</creatorcontrib><creatorcontrib>Sun, Dong-Sheng</creatorcontrib><creatorcontrib>Dong, Shi-Hai</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Communications in theoretical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Chang-Yuan</au><au>You, Yuan</au><au>Lu, Fa-Lin</au><au>Sun, Dong-Sheng</au><au>Dong, Shi-Hai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Universal Associated Legendre Polynomials and Some Useful Definite Integrals</atitle><jtitle>Communications in theoretical physics</jtitle><date>2016-08-01</date><risdate>2016</risdate><volume>66</volume><issue>2</issue><spage>158</spage><epage>162</epage><pages>158-162</pages><issn>0253-6102</issn><eissn>1572-9494</eissn><abstract>We first introduce the universal associated Legendre polynomials, which are occurred in studying the non-central fields such as the single ring-shaped potential and then present definite integrals I sub(A) super( plus or minus )(a, tau ) = [int] sub(-1) super(+1) x super(a)[P sub(l') super(m') (x)] super(2)/(1 plus or minus x) super( tau ) dx, a = 0, 1, 2, 3, 4, 5, 6, tau = 1, 2, 3, I sub(B)(b, sigma ) = [int] sub(-1) super(+1) x super(b)[P sub(l') super(m') (x)] super(2)/(1 - x super(2)) super( sigma ) dx, b = 0, 2, 4, 6, 8, sigma = 1, 2, 3, and I sub(C) super( plus or minus )(c, Kappa ) = [int] sub(-1) super(+1) x super(c)[P sub(l') super(m') (x)] super(2)/[(1 - x super(2)) super( Kappa ) (1 plus or minus x)] dx, c = 0, 1, 2, 3, 4, 5, 6, 7, 8, Kappa = 1, 2. The superindices " plus or minus " in I sub(A) super( plus or minus )(a, tau ) and I sub(C) super( plus or minus ) (c, Kappa ) correspond to those of the factor (1 plus or minus x) involved in weight functions. The formulas obtained in this work and also those for integer quantum numbers l' and m' are very useful and unavailable in classic handbooks.</abstract><doi>10.1088/0253-6102/66/2/158</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0253-6102 |
ispartof | Communications in theoretical physics, 2016-08, Vol.66 (2), p.158-162 |
issn | 0253-6102 1572-9494 |
language | eng |
recordid | cdi_proquest_miscellaneous_1855386668 |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link; Alma/SFX Local Collection |
subjects | Handbooks Integers Integrals Polynomials Quantum numbers Theoretical physics Weight function |
title | Universal Associated Legendre Polynomials and Some Useful Definite Integrals |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T11%3A27%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Universal%20Associated%20Legendre%20Polynomials%20and%20Some%20Useful%20Definite%20Integrals&rft.jtitle=Communications%20in%20theoretical%20physics&rft.au=Chen,%20Chang-Yuan&rft.date=2016-08-01&rft.volume=66&rft.issue=2&rft.spage=158&rft.epage=162&rft.pages=158-162&rft.issn=0253-6102&rft.eissn=1572-9494&rft_id=info:doi/10.1088/0253-6102/66/2/158&rft_dat=%3Cproquest_cross%3E1855386668%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1855386668&rft_id=info:pmid/&rfr_iscdi=true |