Universal Associated Legendre Polynomials and Some Useful Definite Integrals

We first introduce the universal associated Legendre polynomials, which are occurred in studying the non-central fields such as the single ring-shaped potential and then present definite integrals I sub(A) super( plus or minus )(a, tau ) = [int] sub(-1) super(+1) x super(a)[P sub(l') super(m�...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in theoretical physics 2016-08, Vol.66 (2), p.158-162
Hauptverfasser: Chen, Chang-Yuan, You, Yuan, Lu, Fa-Lin, Sun, Dong-Sheng, Dong, Shi-Hai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 162
container_issue 2
container_start_page 158
container_title Communications in theoretical physics
container_volume 66
creator Chen, Chang-Yuan
You, Yuan
Lu, Fa-Lin
Sun, Dong-Sheng
Dong, Shi-Hai
description We first introduce the universal associated Legendre polynomials, which are occurred in studying the non-central fields such as the single ring-shaped potential and then present definite integrals I sub(A) super( plus or minus )(a, tau ) = [int] sub(-1) super(+1) x super(a)[P sub(l') super(m') (x)] super(2)/(1 plus or minus x) super( tau ) dx, a = 0, 1, 2, 3, 4, 5, 6, tau = 1, 2, 3, I sub(B)(b, sigma ) = [int] sub(-1) super(+1) x super(b)[P sub(l') super(m') (x)] super(2)/(1 - x super(2)) super( sigma ) dx, b = 0, 2, 4, 6, 8, sigma = 1, 2, 3, and I sub(C) super( plus or minus )(c, Kappa ) = [int] sub(-1) super(+1) x super(c)[P sub(l') super(m') (x)] super(2)/[(1 - x super(2)) super( Kappa ) (1 plus or minus x)] dx, c = 0, 1, 2, 3, 4, 5, 6, 7, 8, Kappa = 1, 2. The superindices " plus or minus " in I sub(A) super( plus or minus )(a, tau ) and I sub(C) super( plus or minus ) (c, Kappa ) correspond to those of the factor (1 plus or minus x) involved in weight functions. The formulas obtained in this work and also those for integer quantum numbers l' and m' are very useful and unavailable in classic handbooks.
doi_str_mv 10.1088/0253-6102/66/2/158
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1855386668</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1855386668</sourcerecordid><originalsourceid>FETCH-LOGICAL-c280t-d0ea11f3657b8f67cf93941b0a9c9dc017471ab85b73e5d46c2f522f970f71083</originalsourceid><addsrcrecordid>eNo9kE9LwzAchoMoOKdfwFOOXmqTtPnT45g6BwUF3Tmk6S8j0qYz6YR9e1smnp7Lwwvvg9A9JY-UKJUTxotMUMJyIXKWU64u0IJyybKqrMpLtPgXrtFNSl-EECYFXaB6F_wPxGQ6vEppsN6M0OIa9hDaCPh96E5h6L3pEjahxR9DD3iXwB07_ATOBz8C3oYR9nFSbtGVmwB3f1yi3cvz5_o1q9822_WqzixTZMxaAoZSVwguG-WEtK4qqpI2xFS2ai2hspTUNIo3sgDelsIyxxlzlSROTneLJXo47x7i8H2ENOreJwtdZwIMx6Sp4rxQQohZZWfVxiGlCE4fou9NPGlK9JxOz2X0XEYLoZme0hW_qVhhBg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1855386668</pqid></control><display><type>article</type><title>Universal Associated Legendre Polynomials and Some Useful Definite Integrals</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><source>Alma/SFX Local Collection</source><creator>Chen, Chang-Yuan ; You, Yuan ; Lu, Fa-Lin ; Sun, Dong-Sheng ; Dong, Shi-Hai</creator><creatorcontrib>Chen, Chang-Yuan ; You, Yuan ; Lu, Fa-Lin ; Sun, Dong-Sheng ; Dong, Shi-Hai</creatorcontrib><description>We first introduce the universal associated Legendre polynomials, which are occurred in studying the non-central fields such as the single ring-shaped potential and then present definite integrals I sub(A) super( plus or minus )(a, tau ) = [int] sub(-1) super(+1) x super(a)[P sub(l') super(m') (x)] super(2)/(1 plus or minus x) super( tau ) dx, a = 0, 1, 2, 3, 4, 5, 6, tau = 1, 2, 3, I sub(B)(b, sigma ) = [int] sub(-1) super(+1) x super(b)[P sub(l') super(m') (x)] super(2)/(1 - x super(2)) super( sigma ) dx, b = 0, 2, 4, 6, 8, sigma = 1, 2, 3, and I sub(C) super( plus or minus )(c, Kappa ) = [int] sub(-1) super(+1) x super(c)[P sub(l') super(m') (x)] super(2)/[(1 - x super(2)) super( Kappa ) (1 plus or minus x)] dx, c = 0, 1, 2, 3, 4, 5, 6, 7, 8, Kappa = 1, 2. The superindices " plus or minus " in I sub(A) super( plus or minus )(a, tau ) and I sub(C) super( plus or minus ) (c, Kappa ) correspond to those of the factor (1 plus or minus x) involved in weight functions. The formulas obtained in this work and also those for integer quantum numbers l' and m' are very useful and unavailable in classic handbooks.</description><identifier>ISSN: 0253-6102</identifier><identifier>EISSN: 1572-9494</identifier><identifier>DOI: 10.1088/0253-6102/66/2/158</identifier><language>eng</language><subject>Handbooks ; Integers ; Integrals ; Polynomials ; Quantum numbers ; Theoretical physics ; Weight function</subject><ispartof>Communications in theoretical physics, 2016-08, Vol.66 (2), p.158-162</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c280t-d0ea11f3657b8f67cf93941b0a9c9dc017471ab85b73e5d46c2f522f970f71083</citedby><cites>FETCH-LOGICAL-c280t-d0ea11f3657b8f67cf93941b0a9c9dc017471ab85b73e5d46c2f522f970f71083</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Chen, Chang-Yuan</creatorcontrib><creatorcontrib>You, Yuan</creatorcontrib><creatorcontrib>Lu, Fa-Lin</creatorcontrib><creatorcontrib>Sun, Dong-Sheng</creatorcontrib><creatorcontrib>Dong, Shi-Hai</creatorcontrib><title>Universal Associated Legendre Polynomials and Some Useful Definite Integrals</title><title>Communications in theoretical physics</title><description>We first introduce the universal associated Legendre polynomials, which are occurred in studying the non-central fields such as the single ring-shaped potential and then present definite integrals I sub(A) super( plus or minus )(a, tau ) = [int] sub(-1) super(+1) x super(a)[P sub(l') super(m') (x)] super(2)/(1 plus or minus x) super( tau ) dx, a = 0, 1, 2, 3, 4, 5, 6, tau = 1, 2, 3, I sub(B)(b, sigma ) = [int] sub(-1) super(+1) x super(b)[P sub(l') super(m') (x)] super(2)/(1 - x super(2)) super( sigma ) dx, b = 0, 2, 4, 6, 8, sigma = 1, 2, 3, and I sub(C) super( plus or minus )(c, Kappa ) = [int] sub(-1) super(+1) x super(c)[P sub(l') super(m') (x)] super(2)/[(1 - x super(2)) super( Kappa ) (1 plus or minus x)] dx, c = 0, 1, 2, 3, 4, 5, 6, 7, 8, Kappa = 1, 2. The superindices " plus or minus " in I sub(A) super( plus or minus )(a, tau ) and I sub(C) super( plus or minus ) (c, Kappa ) correspond to those of the factor (1 plus or minus x) involved in weight functions. The formulas obtained in this work and also those for integer quantum numbers l' and m' are very useful and unavailable in classic handbooks.</description><subject>Handbooks</subject><subject>Integers</subject><subject>Integrals</subject><subject>Polynomials</subject><subject>Quantum numbers</subject><subject>Theoretical physics</subject><subject>Weight function</subject><issn>0253-6102</issn><issn>1572-9494</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNo9kE9LwzAchoMoOKdfwFOOXmqTtPnT45g6BwUF3Tmk6S8j0qYz6YR9e1smnp7Lwwvvg9A9JY-UKJUTxotMUMJyIXKWU64u0IJyybKqrMpLtPgXrtFNSl-EECYFXaB6F_wPxGQ6vEppsN6M0OIa9hDaCPh96E5h6L3pEjahxR9DD3iXwB07_ATOBz8C3oYR9nFSbtGVmwB3f1yi3cvz5_o1q9822_WqzixTZMxaAoZSVwguG-WEtK4qqpI2xFS2ai2hspTUNIo3sgDelsIyxxlzlSROTneLJXo47x7i8H2ENOreJwtdZwIMx6Sp4rxQQohZZWfVxiGlCE4fou9NPGlK9JxOz2X0XEYLoZme0hW_qVhhBg</recordid><startdate>20160801</startdate><enddate>20160801</enddate><creator>Chen, Chang-Yuan</creator><creator>You, Yuan</creator><creator>Lu, Fa-Lin</creator><creator>Sun, Dong-Sheng</creator><creator>Dong, Shi-Hai</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20160801</creationdate><title>Universal Associated Legendre Polynomials and Some Useful Definite Integrals</title><author>Chen, Chang-Yuan ; You, Yuan ; Lu, Fa-Lin ; Sun, Dong-Sheng ; Dong, Shi-Hai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c280t-d0ea11f3657b8f67cf93941b0a9c9dc017471ab85b73e5d46c2f522f970f71083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Handbooks</topic><topic>Integers</topic><topic>Integrals</topic><topic>Polynomials</topic><topic>Quantum numbers</topic><topic>Theoretical physics</topic><topic>Weight function</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Chang-Yuan</creatorcontrib><creatorcontrib>You, Yuan</creatorcontrib><creatorcontrib>Lu, Fa-Lin</creatorcontrib><creatorcontrib>Sun, Dong-Sheng</creatorcontrib><creatorcontrib>Dong, Shi-Hai</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Communications in theoretical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Chang-Yuan</au><au>You, Yuan</au><au>Lu, Fa-Lin</au><au>Sun, Dong-Sheng</au><au>Dong, Shi-Hai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Universal Associated Legendre Polynomials and Some Useful Definite Integrals</atitle><jtitle>Communications in theoretical physics</jtitle><date>2016-08-01</date><risdate>2016</risdate><volume>66</volume><issue>2</issue><spage>158</spage><epage>162</epage><pages>158-162</pages><issn>0253-6102</issn><eissn>1572-9494</eissn><abstract>We first introduce the universal associated Legendre polynomials, which are occurred in studying the non-central fields such as the single ring-shaped potential and then present definite integrals I sub(A) super( plus or minus )(a, tau ) = [int] sub(-1) super(+1) x super(a)[P sub(l') super(m') (x)] super(2)/(1 plus or minus x) super( tau ) dx, a = 0, 1, 2, 3, 4, 5, 6, tau = 1, 2, 3, I sub(B)(b, sigma ) = [int] sub(-1) super(+1) x super(b)[P sub(l') super(m') (x)] super(2)/(1 - x super(2)) super( sigma ) dx, b = 0, 2, 4, 6, 8, sigma = 1, 2, 3, and I sub(C) super( plus or minus )(c, Kappa ) = [int] sub(-1) super(+1) x super(c)[P sub(l') super(m') (x)] super(2)/[(1 - x super(2)) super( Kappa ) (1 plus or minus x)] dx, c = 0, 1, 2, 3, 4, 5, 6, 7, 8, Kappa = 1, 2. The superindices " plus or minus " in I sub(A) super( plus or minus )(a, tau ) and I sub(C) super( plus or minus ) (c, Kappa ) correspond to those of the factor (1 plus or minus x) involved in weight functions. The formulas obtained in this work and also those for integer quantum numbers l' and m' are very useful and unavailable in classic handbooks.</abstract><doi>10.1088/0253-6102/66/2/158</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0253-6102
ispartof Communications in theoretical physics, 2016-08, Vol.66 (2), p.158-162
issn 0253-6102
1572-9494
language eng
recordid cdi_proquest_miscellaneous_1855386668
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link; Alma/SFX Local Collection
subjects Handbooks
Integers
Integrals
Polynomials
Quantum numbers
Theoretical physics
Weight function
title Universal Associated Legendre Polynomials and Some Useful Definite Integrals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T11%3A27%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Universal%20Associated%20Legendre%20Polynomials%20and%20Some%20Useful%20Definite%20Integrals&rft.jtitle=Communications%20in%20theoretical%20physics&rft.au=Chen,%20Chang-Yuan&rft.date=2016-08-01&rft.volume=66&rft.issue=2&rft.spage=158&rft.epage=162&rft.pages=158-162&rft.issn=0253-6102&rft.eissn=1572-9494&rft_id=info:doi/10.1088/0253-6102/66/2/158&rft_dat=%3Cproquest_cross%3E1855386668%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1855386668&rft_id=info:pmid/&rfr_iscdi=true