An analytical solution for buckling and vibration analysis of functionally graded sandwich beams using a quasi-3D shear deformation theory

This paper presents a Ritz-type analytical solution for buckling and free vibration analysis of functionally graded (FG) sandwich beams with various boundary conditions using a quasi-3D beam theory. It accounts a hyperbolic distribution of both axial and transverse displacements. Equations of motion...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Composite structures 2016-11, Vol.156, p.238-252
Hauptverfasser: Nguyen, Trung-Kien, Vo, Thuc P., Nguyen, Ba-Duy, Lee, Jaehong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 252
container_issue
container_start_page 238
container_title Composite structures
container_volume 156
creator Nguyen, Trung-Kien
Vo, Thuc P.
Nguyen, Ba-Duy
Lee, Jaehong
description This paper presents a Ritz-type analytical solution for buckling and free vibration analysis of functionally graded (FG) sandwich beams with various boundary conditions using a quasi-3D beam theory. It accounts a hyperbolic distribution of both axial and transverse displacements. Equations of motion are derived from Lagrange’s equations. Two types of FG sandwich beams namely FG-faces ceramic-core (type A) and FG-core homogeneous-faces (type B) are considered. Numerical results are compared with earlier works and investigated effects of the power-law index, thickness ratio of layers, span-to-depth ratio and boundary conditions on the critical buckling loads and natural frequencies.
doi_str_mv 10.1016/j.compstruct.2015.11.074
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1855382974</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0263822315010776</els_id><sourcerecordid>1855382974</sourcerecordid><originalsourceid>FETCH-LOGICAL-c401t-18cf9d36a2034feb3ff7f3a9b2b1c579a26cd3f0b118c0ef893e06ed5b7cf5403</originalsourceid><addsrcrecordid>eNqFkM9u1DAQhy1UJJbCO_jIJcET549zLIUCUqVe2rPl2OOuFyfeepJW-wo8NdldpB57Gmnmm280P8Y4iBIEtF93pU3jnua82LmsBDQlQCm6-h3bgOr6AoRqLthGVK0sVFXJD-wj0U4IoWqADft7NXEzmXiYgzWRU4rLHNLEfcp8WOyfGKbHFXD8OQzZnEYnnALx5LlfJntsmhgP_DEbh47Tir8Eu-UDmpH4QicFf1oMhUJ-57RFk7nD9cR4Ns5bTPnwib33JhJ-_l8v2cPNj_vrX8Xt3c_f11e3ha0FzAUo63snW1MJWXscpPedl6YfqgFs0_Wmaq2TXgywkgK96iWKFl0zdNY3tZCX7MvZu8_paUGa9RjIYoxmwrSQBtU0UlV9V6-oOqM2J6KMXu9zGE0-aBD6GL_e6df49TF-DaDFafXbeRXXV54DZk024GTRhYwr61J4W_IPPRiYBA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1855382974</pqid></control><display><type>article</type><title>An analytical solution for buckling and vibration analysis of functionally graded sandwich beams using a quasi-3D shear deformation theory</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Nguyen, Trung-Kien ; Vo, Thuc P. ; Nguyen, Ba-Duy ; Lee, Jaehong</creator><creatorcontrib>Nguyen, Trung-Kien ; Vo, Thuc P. ; Nguyen, Ba-Duy ; Lee, Jaehong</creatorcontrib><description>This paper presents a Ritz-type analytical solution for buckling and free vibration analysis of functionally graded (FG) sandwich beams with various boundary conditions using a quasi-3D beam theory. It accounts a hyperbolic distribution of both axial and transverse displacements. Equations of motion are derived from Lagrange’s equations. Two types of FG sandwich beams namely FG-faces ceramic-core (type A) and FG-core homogeneous-faces (type B) are considered. Numerical results are compared with earlier works and investigated effects of the power-law index, thickness ratio of layers, span-to-depth ratio and boundary conditions on the critical buckling loads and natural frequencies.</description><identifier>ISSN: 0263-8223</identifier><identifier>EISSN: 1879-1085</identifier><identifier>DOI: 10.1016/j.compstruct.2015.11.074</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>A quasi-3D theory ; Beams (structural) ; Boundary conditions ; Buckling ; Functionally graded sandwich beams ; Functionally gradient materials ; Mathematical analysis ; Mathematical models ; Sandwich structures ; Thickness ratio ; Vibration</subject><ispartof>Composite structures, 2016-11, Vol.156, p.238-252</ispartof><rights>2015 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c401t-18cf9d36a2034feb3ff7f3a9b2b1c579a26cd3f0b118c0ef893e06ed5b7cf5403</citedby><cites>FETCH-LOGICAL-c401t-18cf9d36a2034feb3ff7f3a9b2b1c579a26cd3f0b118c0ef893e06ed5b7cf5403</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.compstruct.2015.11.074$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,46000</link.rule.ids></links><search><creatorcontrib>Nguyen, Trung-Kien</creatorcontrib><creatorcontrib>Vo, Thuc P.</creatorcontrib><creatorcontrib>Nguyen, Ba-Duy</creatorcontrib><creatorcontrib>Lee, Jaehong</creatorcontrib><title>An analytical solution for buckling and vibration analysis of functionally graded sandwich beams using a quasi-3D shear deformation theory</title><title>Composite structures</title><description>This paper presents a Ritz-type analytical solution for buckling and free vibration analysis of functionally graded (FG) sandwich beams with various boundary conditions using a quasi-3D beam theory. It accounts a hyperbolic distribution of both axial and transverse displacements. Equations of motion are derived from Lagrange’s equations. Two types of FG sandwich beams namely FG-faces ceramic-core (type A) and FG-core homogeneous-faces (type B) are considered. Numerical results are compared with earlier works and investigated effects of the power-law index, thickness ratio of layers, span-to-depth ratio and boundary conditions on the critical buckling loads and natural frequencies.</description><subject>A quasi-3D theory</subject><subject>Beams (structural)</subject><subject>Boundary conditions</subject><subject>Buckling</subject><subject>Functionally graded sandwich beams</subject><subject>Functionally gradient materials</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Sandwich structures</subject><subject>Thickness ratio</subject><subject>Vibration</subject><issn>0263-8223</issn><issn>1879-1085</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkM9u1DAQhy1UJJbCO_jIJcET549zLIUCUqVe2rPl2OOuFyfeepJW-wo8NdldpB57Gmnmm280P8Y4iBIEtF93pU3jnua82LmsBDQlQCm6-h3bgOr6AoRqLthGVK0sVFXJD-wj0U4IoWqADft7NXEzmXiYgzWRU4rLHNLEfcp8WOyfGKbHFXD8OQzZnEYnnALx5LlfJntsmhgP_DEbh47Tir8Eu-UDmpH4QicFf1oMhUJ-57RFk7nD9cR4Ns5bTPnwib33JhJ-_l8v2cPNj_vrX8Xt3c_f11e3ha0FzAUo63snW1MJWXscpPedl6YfqgFs0_Wmaq2TXgywkgK96iWKFl0zdNY3tZCX7MvZu8_paUGa9RjIYoxmwrSQBtU0UlV9V6-oOqM2J6KMXu9zGE0-aBD6GL_e6df49TF-DaDFafXbeRXXV54DZk024GTRhYwr61J4W_IPPRiYBA</recordid><startdate>20161115</startdate><enddate>20161115</enddate><creator>Nguyen, Trung-Kien</creator><creator>Vo, Thuc P.</creator><creator>Nguyen, Ba-Duy</creator><creator>Lee, Jaehong</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20161115</creationdate><title>An analytical solution for buckling and vibration analysis of functionally graded sandwich beams using a quasi-3D shear deformation theory</title><author>Nguyen, Trung-Kien ; Vo, Thuc P. ; Nguyen, Ba-Duy ; Lee, Jaehong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c401t-18cf9d36a2034feb3ff7f3a9b2b1c579a26cd3f0b118c0ef893e06ed5b7cf5403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>A quasi-3D theory</topic><topic>Beams (structural)</topic><topic>Boundary conditions</topic><topic>Buckling</topic><topic>Functionally graded sandwich beams</topic><topic>Functionally gradient materials</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Sandwich structures</topic><topic>Thickness ratio</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nguyen, Trung-Kien</creatorcontrib><creatorcontrib>Vo, Thuc P.</creatorcontrib><creatorcontrib>Nguyen, Ba-Duy</creatorcontrib><creatorcontrib>Lee, Jaehong</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Composite structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nguyen, Trung-Kien</au><au>Vo, Thuc P.</au><au>Nguyen, Ba-Duy</au><au>Lee, Jaehong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An analytical solution for buckling and vibration analysis of functionally graded sandwich beams using a quasi-3D shear deformation theory</atitle><jtitle>Composite structures</jtitle><date>2016-11-15</date><risdate>2016</risdate><volume>156</volume><spage>238</spage><epage>252</epage><pages>238-252</pages><issn>0263-8223</issn><eissn>1879-1085</eissn><abstract>This paper presents a Ritz-type analytical solution for buckling and free vibration analysis of functionally graded (FG) sandwich beams with various boundary conditions using a quasi-3D beam theory. It accounts a hyperbolic distribution of both axial and transverse displacements. Equations of motion are derived from Lagrange’s equations. Two types of FG sandwich beams namely FG-faces ceramic-core (type A) and FG-core homogeneous-faces (type B) are considered. Numerical results are compared with earlier works and investigated effects of the power-law index, thickness ratio of layers, span-to-depth ratio and boundary conditions on the critical buckling loads and natural frequencies.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.compstruct.2015.11.074</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0263-8223
ispartof Composite structures, 2016-11, Vol.156, p.238-252
issn 0263-8223
1879-1085
language eng
recordid cdi_proquest_miscellaneous_1855382974
source ScienceDirect Journals (5 years ago - present)
subjects A quasi-3D theory
Beams (structural)
Boundary conditions
Buckling
Functionally graded sandwich beams
Functionally gradient materials
Mathematical analysis
Mathematical models
Sandwich structures
Thickness ratio
Vibration
title An analytical solution for buckling and vibration analysis of functionally graded sandwich beams using a quasi-3D shear deformation theory
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T18%3A08%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20analytical%20solution%20for%20buckling%20and%20vibration%20analysis%20of%20functionally%20graded%20sandwich%20beams%20using%20a%20quasi-3D%20shear%20deformation%20theory&rft.jtitle=Composite%20structures&rft.au=Nguyen,%20Trung-Kien&rft.date=2016-11-15&rft.volume=156&rft.spage=238&rft.epage=252&rft.pages=238-252&rft.issn=0263-8223&rft.eissn=1879-1085&rft_id=info:doi/10.1016/j.compstruct.2015.11.074&rft_dat=%3Cproquest_cross%3E1855382974%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1855382974&rft_id=info:pmid/&rft_els_id=S0263822315010776&rfr_iscdi=true