An analytical solution for buckling and vibration analysis of functionally graded sandwich beams using a quasi-3D shear deformation theory
This paper presents a Ritz-type analytical solution for buckling and free vibration analysis of functionally graded (FG) sandwich beams with various boundary conditions using a quasi-3D beam theory. It accounts a hyperbolic distribution of both axial and transverse displacements. Equations of motion...
Gespeichert in:
Veröffentlicht in: | Composite structures 2016-11, Vol.156, p.238-252 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 252 |
---|---|
container_issue | |
container_start_page | 238 |
container_title | Composite structures |
container_volume | 156 |
creator | Nguyen, Trung-Kien Vo, Thuc P. Nguyen, Ba-Duy Lee, Jaehong |
description | This paper presents a Ritz-type analytical solution for buckling and free vibration analysis of functionally graded (FG) sandwich beams with various boundary conditions using a quasi-3D beam theory. It accounts a hyperbolic distribution of both axial and transverse displacements. Equations of motion are derived from Lagrange’s equations. Two types of FG sandwich beams namely FG-faces ceramic-core (type A) and FG-core homogeneous-faces (type B) are considered. Numerical results are compared with earlier works and investigated effects of the power-law index, thickness ratio of layers, span-to-depth ratio and boundary conditions on the critical buckling loads and natural frequencies. |
doi_str_mv | 10.1016/j.compstruct.2015.11.074 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1855382974</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0263822315010776</els_id><sourcerecordid>1855382974</sourcerecordid><originalsourceid>FETCH-LOGICAL-c401t-18cf9d36a2034feb3ff7f3a9b2b1c579a26cd3f0b118c0ef893e06ed5b7cf5403</originalsourceid><addsrcrecordid>eNqFkM9u1DAQhy1UJJbCO_jIJcET549zLIUCUqVe2rPl2OOuFyfeepJW-wo8NdldpB57Gmnmm280P8Y4iBIEtF93pU3jnua82LmsBDQlQCm6-h3bgOr6AoRqLthGVK0sVFXJD-wj0U4IoWqADft7NXEzmXiYgzWRU4rLHNLEfcp8WOyfGKbHFXD8OQzZnEYnnALx5LlfJntsmhgP_DEbh47Tir8Eu-UDmpH4QicFf1oMhUJ-57RFk7nD9cR4Ns5bTPnwib33JhJ-_l8v2cPNj_vrX8Xt3c_f11e3ha0FzAUo63snW1MJWXscpPedl6YfqgFs0_Wmaq2TXgywkgK96iWKFl0zdNY3tZCX7MvZu8_paUGa9RjIYoxmwrSQBtU0UlV9V6-oOqM2J6KMXu9zGE0-aBD6GL_e6df49TF-DaDFafXbeRXXV54DZk024GTRhYwr61J4W_IPPRiYBA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1855382974</pqid></control><display><type>article</type><title>An analytical solution for buckling and vibration analysis of functionally graded sandwich beams using a quasi-3D shear deformation theory</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Nguyen, Trung-Kien ; Vo, Thuc P. ; Nguyen, Ba-Duy ; Lee, Jaehong</creator><creatorcontrib>Nguyen, Trung-Kien ; Vo, Thuc P. ; Nguyen, Ba-Duy ; Lee, Jaehong</creatorcontrib><description>This paper presents a Ritz-type analytical solution for buckling and free vibration analysis of functionally graded (FG) sandwich beams with various boundary conditions using a quasi-3D beam theory. It accounts a hyperbolic distribution of both axial and transverse displacements. Equations of motion are derived from Lagrange’s equations. Two types of FG sandwich beams namely FG-faces ceramic-core (type A) and FG-core homogeneous-faces (type B) are considered. Numerical results are compared with earlier works and investigated effects of the power-law index, thickness ratio of layers, span-to-depth ratio and boundary conditions on the critical buckling loads and natural frequencies.</description><identifier>ISSN: 0263-8223</identifier><identifier>EISSN: 1879-1085</identifier><identifier>DOI: 10.1016/j.compstruct.2015.11.074</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>A quasi-3D theory ; Beams (structural) ; Boundary conditions ; Buckling ; Functionally graded sandwich beams ; Functionally gradient materials ; Mathematical analysis ; Mathematical models ; Sandwich structures ; Thickness ratio ; Vibration</subject><ispartof>Composite structures, 2016-11, Vol.156, p.238-252</ispartof><rights>2015 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c401t-18cf9d36a2034feb3ff7f3a9b2b1c579a26cd3f0b118c0ef893e06ed5b7cf5403</citedby><cites>FETCH-LOGICAL-c401t-18cf9d36a2034feb3ff7f3a9b2b1c579a26cd3f0b118c0ef893e06ed5b7cf5403</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.compstruct.2015.11.074$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,46000</link.rule.ids></links><search><creatorcontrib>Nguyen, Trung-Kien</creatorcontrib><creatorcontrib>Vo, Thuc P.</creatorcontrib><creatorcontrib>Nguyen, Ba-Duy</creatorcontrib><creatorcontrib>Lee, Jaehong</creatorcontrib><title>An analytical solution for buckling and vibration analysis of functionally graded sandwich beams using a quasi-3D shear deformation theory</title><title>Composite structures</title><description>This paper presents a Ritz-type analytical solution for buckling and free vibration analysis of functionally graded (FG) sandwich beams with various boundary conditions using a quasi-3D beam theory. It accounts a hyperbolic distribution of both axial and transverse displacements. Equations of motion are derived from Lagrange’s equations. Two types of FG sandwich beams namely FG-faces ceramic-core (type A) and FG-core homogeneous-faces (type B) are considered. Numerical results are compared with earlier works and investigated effects of the power-law index, thickness ratio of layers, span-to-depth ratio and boundary conditions on the critical buckling loads and natural frequencies.</description><subject>A quasi-3D theory</subject><subject>Beams (structural)</subject><subject>Boundary conditions</subject><subject>Buckling</subject><subject>Functionally graded sandwich beams</subject><subject>Functionally gradient materials</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Sandwich structures</subject><subject>Thickness ratio</subject><subject>Vibration</subject><issn>0263-8223</issn><issn>1879-1085</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkM9u1DAQhy1UJJbCO_jIJcET549zLIUCUqVe2rPl2OOuFyfeepJW-wo8NdldpB57Gmnmm280P8Y4iBIEtF93pU3jnua82LmsBDQlQCm6-h3bgOr6AoRqLthGVK0sVFXJD-wj0U4IoWqADft7NXEzmXiYgzWRU4rLHNLEfcp8WOyfGKbHFXD8OQzZnEYnnALx5LlfJntsmhgP_DEbh47Tir8Eu-UDmpH4QicFf1oMhUJ-57RFk7nD9cR4Ns5bTPnwib33JhJ-_l8v2cPNj_vrX8Xt3c_f11e3ha0FzAUo63snW1MJWXscpPedl6YfqgFs0_Wmaq2TXgywkgK96iWKFl0zdNY3tZCX7MvZu8_paUGa9RjIYoxmwrSQBtU0UlV9V6-oOqM2J6KMXu9zGE0-aBD6GL_e6df49TF-DaDFafXbeRXXV54DZk024GTRhYwr61J4W_IPPRiYBA</recordid><startdate>20161115</startdate><enddate>20161115</enddate><creator>Nguyen, Trung-Kien</creator><creator>Vo, Thuc P.</creator><creator>Nguyen, Ba-Duy</creator><creator>Lee, Jaehong</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20161115</creationdate><title>An analytical solution for buckling and vibration analysis of functionally graded sandwich beams using a quasi-3D shear deformation theory</title><author>Nguyen, Trung-Kien ; Vo, Thuc P. ; Nguyen, Ba-Duy ; Lee, Jaehong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c401t-18cf9d36a2034feb3ff7f3a9b2b1c579a26cd3f0b118c0ef893e06ed5b7cf5403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>A quasi-3D theory</topic><topic>Beams (structural)</topic><topic>Boundary conditions</topic><topic>Buckling</topic><topic>Functionally graded sandwich beams</topic><topic>Functionally gradient materials</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Sandwich structures</topic><topic>Thickness ratio</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nguyen, Trung-Kien</creatorcontrib><creatorcontrib>Vo, Thuc P.</creatorcontrib><creatorcontrib>Nguyen, Ba-Duy</creatorcontrib><creatorcontrib>Lee, Jaehong</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Composite structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nguyen, Trung-Kien</au><au>Vo, Thuc P.</au><au>Nguyen, Ba-Duy</au><au>Lee, Jaehong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An analytical solution for buckling and vibration analysis of functionally graded sandwich beams using a quasi-3D shear deformation theory</atitle><jtitle>Composite structures</jtitle><date>2016-11-15</date><risdate>2016</risdate><volume>156</volume><spage>238</spage><epage>252</epage><pages>238-252</pages><issn>0263-8223</issn><eissn>1879-1085</eissn><abstract>This paper presents a Ritz-type analytical solution for buckling and free vibration analysis of functionally graded (FG) sandwich beams with various boundary conditions using a quasi-3D beam theory. It accounts a hyperbolic distribution of both axial and transverse displacements. Equations of motion are derived from Lagrange’s equations. Two types of FG sandwich beams namely FG-faces ceramic-core (type A) and FG-core homogeneous-faces (type B) are considered. Numerical results are compared with earlier works and investigated effects of the power-law index, thickness ratio of layers, span-to-depth ratio and boundary conditions on the critical buckling loads and natural frequencies.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.compstruct.2015.11.074</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0263-8223 |
ispartof | Composite structures, 2016-11, Vol.156, p.238-252 |
issn | 0263-8223 1879-1085 |
language | eng |
recordid | cdi_proquest_miscellaneous_1855382974 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | A quasi-3D theory Beams (structural) Boundary conditions Buckling Functionally graded sandwich beams Functionally gradient materials Mathematical analysis Mathematical models Sandwich structures Thickness ratio Vibration |
title | An analytical solution for buckling and vibration analysis of functionally graded sandwich beams using a quasi-3D shear deformation theory |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T18%3A08%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20analytical%20solution%20for%20buckling%20and%20vibration%20analysis%20of%20functionally%20graded%20sandwich%20beams%20using%20a%20quasi-3D%20shear%20deformation%20theory&rft.jtitle=Composite%20structures&rft.au=Nguyen,%20Trung-Kien&rft.date=2016-11-15&rft.volume=156&rft.spage=238&rft.epage=252&rft.pages=238-252&rft.issn=0263-8223&rft.eissn=1879-1085&rft_id=info:doi/10.1016/j.compstruct.2015.11.074&rft_dat=%3Cproquest_cross%3E1855382974%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1855382974&rft_id=info:pmid/&rft_els_id=S0263822315010776&rfr_iscdi=true |