Frequency stabilization of ambience-isolated internal-mirror He–Ne lasers by thermoelectric-cooling thermal compensation

An approach for frequency stabilization of an ambience-isolated internal-mirror He–Ne laser (632.8 nm) utilizing temperature control of the laser tube with Peltier thermoelectric coolers is demonstrated. Measurements indicate that there are an optimal temperature (23 °C) and an optimal discharge cur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of theoretical and applied physics 2016-12, Vol.10 (4), p.315-321
Hauptverfasser: Shirvani-Mahdavi, Hamidreza, Narges, Yaghoubi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 321
container_issue 4
container_start_page 315
container_title Journal of theoretical and applied physics
container_volume 10
creator Shirvani-Mahdavi, Hamidreza
Narges, Yaghoubi
description An approach for frequency stabilization of an ambience-isolated internal-mirror He–Ne laser (632.8 nm) utilizing temperature control of the laser tube with Peltier thermoelectric coolers is demonstrated. Measurements indicate that there are an optimal temperature (23 °C) and an optimal discharge current (5.5 mA) of laser tube for which the laser light power is separately maximized. To prevent the effect of fluctuation of discharge current on the laser stability, an adjustable current source is designed and fabricated so that the current is set to be optimal (5.50 ± 0.01 mA). To isolate the laser tube from the environment, the laser metallic box connected to two Peltier thermoelectric coolers is surrounded by two thermal and acoustic insulator shells. The laser has two longitudinal modes very often. Any change in the frequency of longitudinal modes at the optimal temperature is monitored by sampling the difference of longitudinal modes’ intensities. Therefore, using a feedback mechanism, the current of thermoelectric coolers is so controlled that the frequency of modes stays constant on the gain profile of the laser. The frequency stability is measured equal to 1.17 × 10 −9 (∼2700×) for less than 1 min and 2.57 × 10 −9 (∼1200×) for more than 1 h.
doi_str_mv 10.1007/s40094-016-0231-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1855381378</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1855381378</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-fc2b01fa61213539815e732a9a14832b37231b8ed4eff4609bd795c5b58462a33</originalsourceid><addsrcrecordid>eNp1kc1KxDAUhYMoOKgP4C7gxk00P03bLEX8A9GNrkOauR0zpM2YdBZ15Tv4hj6JqXUhgtkEku-cew8HoWNGzxil1XkqKFUFoawklAtGxh204FwyUnEhd9GCVUISJbjcR0cprWk-SglVswV6u47wuoXejjgNpnHevZnBhR6HFpuucfkHiEvBmwGW2PUDxN540rkYQ8S38Pn-8QDYmwQx4WbEwwvELoAHO0RniQ3Bu341PxuPbeg20KfvEYdorzU-wdHPfYCer6-eLm_J_ePN3eXFPbFC8YG0ljeUtaZknAk5bS2hEtwow4pa8EbkkKypYVlA2xYlVc2yUtLKRtZFyY0QB-h09t3EkKOmQXcuWfDe9BC2SbNaSlEzUdUZPfmDrsN2CjxRgtaiLCXNFJspG0NKEVq9ia4zcdSM6qkQPReicyF6KkSPWcNnTcpsv4L4y_lf0ReP4ZCd</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1830836650</pqid></control><display><type>article</type><title>Frequency stabilization of ambience-isolated internal-mirror He–Ne lasers by thermoelectric-cooling thermal compensation</title><source>EZB-FREE-00999 freely available EZB journals</source><source>SpringerLink Journals - AutoHoldings</source><creator>Shirvani-Mahdavi, Hamidreza ; Narges, Yaghoubi</creator><creatorcontrib>Shirvani-Mahdavi, Hamidreza ; Narges, Yaghoubi</creatorcontrib><description>An approach for frequency stabilization of an ambience-isolated internal-mirror He–Ne laser (632.8 nm) utilizing temperature control of the laser tube with Peltier thermoelectric coolers is demonstrated. Measurements indicate that there are an optimal temperature (23 °C) and an optimal discharge current (5.5 mA) of laser tube for which the laser light power is separately maximized. To prevent the effect of fluctuation of discharge current on the laser stability, an adjustable current source is designed and fabricated so that the current is set to be optimal (5.50 ± 0.01 mA). To isolate the laser tube from the environment, the laser metallic box connected to two Peltier thermoelectric coolers is surrounded by two thermal and acoustic insulator shells. The laser has two longitudinal modes very often. Any change in the frequency of longitudinal modes at the optimal temperature is monitored by sampling the difference of longitudinal modes’ intensities. Therefore, using a feedback mechanism, the current of thermoelectric coolers is so controlled that the frequency of modes stays constant on the gain profile of the laser. The frequency stability is measured equal to 1.17 × 10 −9 (∼2700×) for less than 1 min and 2.57 × 10 −9 (∼1200×) for more than 1 h.</description><identifier>ISSN: 1735-9325</identifier><identifier>ISSN: 2251-7227</identifier><identifier>EISSN: 2251-7235</identifier><identifier>DOI: 10.1007/s40094-016-0231-y</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied and Technical Physics ; Atomic ; Condensed Matter Physics ; Coolers ; Frequency stability ; Frequency stabilization ; Lasers ; Medical and Radiation Physics ; Molecular ; Nanoscale Science and Technology ; Optical and Plasma Physics ; Optimization ; Physics ; Physics and Astronomy ; Temperature control ; Thermoelectric cooling ; Tubes</subject><ispartof>Journal of theoretical and applied physics, 2016-12, Vol.10 (4), p.315-321</ispartof><rights>The Author(s) 2016</rights><rights>Islamic Azad University 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-fc2b01fa61213539815e732a9a14832b37231b8ed4eff4609bd795c5b58462a33</citedby><cites>FETCH-LOGICAL-c392t-fc2b01fa61213539815e732a9a14832b37231b8ed4eff4609bd795c5b58462a33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40094-016-0231-y$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40094-016-0231-y$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27915,27916,41479,42548,51310</link.rule.ids></links><search><creatorcontrib>Shirvani-Mahdavi, Hamidreza</creatorcontrib><creatorcontrib>Narges, Yaghoubi</creatorcontrib><title>Frequency stabilization of ambience-isolated internal-mirror He–Ne lasers by thermoelectric-cooling thermal compensation</title><title>Journal of theoretical and applied physics</title><addtitle>J Theor Appl Phys</addtitle><description>An approach for frequency stabilization of an ambience-isolated internal-mirror He–Ne laser (632.8 nm) utilizing temperature control of the laser tube with Peltier thermoelectric coolers is demonstrated. Measurements indicate that there are an optimal temperature (23 °C) and an optimal discharge current (5.5 mA) of laser tube for which the laser light power is separately maximized. To prevent the effect of fluctuation of discharge current on the laser stability, an adjustable current source is designed and fabricated so that the current is set to be optimal (5.50 ± 0.01 mA). To isolate the laser tube from the environment, the laser metallic box connected to two Peltier thermoelectric coolers is surrounded by two thermal and acoustic insulator shells. The laser has two longitudinal modes very often. Any change in the frequency of longitudinal modes at the optimal temperature is monitored by sampling the difference of longitudinal modes’ intensities. Therefore, using a feedback mechanism, the current of thermoelectric coolers is so controlled that the frequency of modes stays constant on the gain profile of the laser. The frequency stability is measured equal to 1.17 × 10 −9 (∼2700×) for less than 1 min and 2.57 × 10 −9 (∼1200×) for more than 1 h.</description><subject>Applied and Technical Physics</subject><subject>Atomic</subject><subject>Condensed Matter Physics</subject><subject>Coolers</subject><subject>Frequency stability</subject><subject>Frequency stabilization</subject><subject>Lasers</subject><subject>Medical and Radiation Physics</subject><subject>Molecular</subject><subject>Nanoscale Science and Technology</subject><subject>Optical and Plasma Physics</subject><subject>Optimization</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Temperature control</subject><subject>Thermoelectric cooling</subject><subject>Tubes</subject><issn>1735-9325</issn><issn>2251-7227</issn><issn>2251-7235</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kc1KxDAUhYMoOKgP4C7gxk00P03bLEX8A9GNrkOauR0zpM2YdBZ15Tv4hj6JqXUhgtkEku-cew8HoWNGzxil1XkqKFUFoawklAtGxh204FwyUnEhd9GCVUISJbjcR0cprWk-SglVswV6u47wuoXejjgNpnHevZnBhR6HFpuucfkHiEvBmwGW2PUDxN540rkYQ8S38Pn-8QDYmwQx4WbEwwvELoAHO0RniQ3Bu341PxuPbeg20KfvEYdorzU-wdHPfYCer6-eLm_J_ePN3eXFPbFC8YG0ljeUtaZknAk5bS2hEtwow4pa8EbkkKypYVlA2xYlVc2yUtLKRtZFyY0QB-h09t3EkKOmQXcuWfDe9BC2SbNaSlEzUdUZPfmDrsN2CjxRgtaiLCXNFJspG0NKEVq9ia4zcdSM6qkQPReicyF6KkSPWcNnTcpsv4L4y_lf0ReP4ZCd</recordid><startdate>20161201</startdate><enddate>20161201</enddate><creator>Shirvani-Mahdavi, Hamidreza</creator><creator>Narges, Yaghoubi</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20161201</creationdate><title>Frequency stabilization of ambience-isolated internal-mirror He–Ne lasers by thermoelectric-cooling thermal compensation</title><author>Shirvani-Mahdavi, Hamidreza ; Narges, Yaghoubi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-fc2b01fa61213539815e732a9a14832b37231b8ed4eff4609bd795c5b58462a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Applied and Technical Physics</topic><topic>Atomic</topic><topic>Condensed Matter Physics</topic><topic>Coolers</topic><topic>Frequency stability</topic><topic>Frequency stabilization</topic><topic>Lasers</topic><topic>Medical and Radiation Physics</topic><topic>Molecular</topic><topic>Nanoscale Science and Technology</topic><topic>Optical and Plasma Physics</topic><topic>Optimization</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Temperature control</topic><topic>Thermoelectric cooling</topic><topic>Tubes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shirvani-Mahdavi, Hamidreza</creatorcontrib><creatorcontrib>Narges, Yaghoubi</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of theoretical and applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shirvani-Mahdavi, Hamidreza</au><au>Narges, Yaghoubi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Frequency stabilization of ambience-isolated internal-mirror He–Ne lasers by thermoelectric-cooling thermal compensation</atitle><jtitle>Journal of theoretical and applied physics</jtitle><stitle>J Theor Appl Phys</stitle><date>2016-12-01</date><risdate>2016</risdate><volume>10</volume><issue>4</issue><spage>315</spage><epage>321</epage><pages>315-321</pages><issn>1735-9325</issn><issn>2251-7227</issn><eissn>2251-7235</eissn><abstract>An approach for frequency stabilization of an ambience-isolated internal-mirror He–Ne laser (632.8 nm) utilizing temperature control of the laser tube with Peltier thermoelectric coolers is demonstrated. Measurements indicate that there are an optimal temperature (23 °C) and an optimal discharge current (5.5 mA) of laser tube for which the laser light power is separately maximized. To prevent the effect of fluctuation of discharge current on the laser stability, an adjustable current source is designed and fabricated so that the current is set to be optimal (5.50 ± 0.01 mA). To isolate the laser tube from the environment, the laser metallic box connected to two Peltier thermoelectric coolers is surrounded by two thermal and acoustic insulator shells. The laser has two longitudinal modes very often. Any change in the frequency of longitudinal modes at the optimal temperature is monitored by sampling the difference of longitudinal modes’ intensities. Therefore, using a feedback mechanism, the current of thermoelectric coolers is so controlled that the frequency of modes stays constant on the gain profile of the laser. The frequency stability is measured equal to 1.17 × 10 −9 (∼2700×) for less than 1 min and 2.57 × 10 −9 (∼1200×) for more than 1 h.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s40094-016-0231-y</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1735-9325
ispartof Journal of theoretical and applied physics, 2016-12, Vol.10 (4), p.315-321
issn 1735-9325
2251-7227
2251-7235
language eng
recordid cdi_proquest_miscellaneous_1855381378
source EZB-FREE-00999 freely available EZB journals; SpringerLink Journals - AutoHoldings
subjects Applied and Technical Physics
Atomic
Condensed Matter Physics
Coolers
Frequency stability
Frequency stabilization
Lasers
Medical and Radiation Physics
Molecular
Nanoscale Science and Technology
Optical and Plasma Physics
Optimization
Physics
Physics and Astronomy
Temperature control
Thermoelectric cooling
Tubes
title Frequency stabilization of ambience-isolated internal-mirror He–Ne lasers by thermoelectric-cooling thermal compensation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T00%3A19%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Frequency%20stabilization%20of%20ambience-isolated%20internal-mirror%20He%E2%80%93Ne%20lasers%20by%20thermoelectric-cooling%20thermal%20compensation&rft.jtitle=Journal%20of%20theoretical%20and%20applied%20physics&rft.au=Shirvani-Mahdavi,%20Hamidreza&rft.date=2016-12-01&rft.volume=10&rft.issue=4&rft.spage=315&rft.epage=321&rft.pages=315-321&rft.issn=1735-9325&rft.eissn=2251-7235&rft_id=info:doi/10.1007/s40094-016-0231-y&rft_dat=%3Cproquest_cross%3E1855381378%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1830836650&rft_id=info:pmid/&rfr_iscdi=true