Overpotential-dependent shape evolution of gold nanocrystals grown in a deep eutectic solvent
This paper reports an overpotential-dependent shape evolution of gold nano-crystals (Au NCs) in a choline chloride-urea (ChCl-urea) based deep eutectic solvent (DES). It was found that the growth overpotentials play a key role in tuning the shape of Au NCs. The shape evolution of Au NCs successively...
Gespeichert in:
Veröffentlicht in: | Nano research 2016-11, Vol.9 (11), p.3547-3557 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3557 |
---|---|
container_issue | 11 |
container_start_page | 3547 |
container_title | Nano research |
container_volume | 9 |
creator | Wei, Lu Lu, Bangan Sun, Mingjun Tian, Na Zhou, Zhiyou Xu, Binbin Zhao, Xinsheng Sun, Shigang |
description | This paper reports an overpotential-dependent shape evolution of gold nano-crystals (Au NCs) in a choline chloride-urea (ChCl-urea) based deep eutectic solvent (DES). It was found that the growth overpotentials play a key role in tuning the shape of Au NCs. The shape evolution of Au NCs successively from concave rhombic dodecahedra (RD) to concave cubes, octopods, cuboctahedral boxes, and finally, to hollow octahedra (OH) was achieved by carefully controlling the growth overpotentials in the range from -0.50 to -0.95 V (vs. Pt quasi-reference electrode). In addition, the presence of urea was important in the shape evolution of Au NCs. The surface structure of the as-prepared Au NCs was comprehensively characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and electrochemical studies. It was demonstrated that the electrocatalytic activity of the as-prepared Au NCs for D-glucose electrooxidation was sensitively dependent on their morphologies. The results illustrated that the dehydrogenated glucose adsorbed on concave RD and concave cubic Au NCs was preferentially transformed to gluconolactone at low electrode potentials. Subsequent gluconolactone oxidation occurred favorably on octopods with {111}-truncated arms and hollow OH at high electrode potential. This study opens up a new approach to develop the surface-structure-controlled growth of Au NCs by combining DES with electrochemical techniques. In addition, it is significant for the tuning of the electrocatalytic properties of NCs. |
doi_str_mv | 10.1007/s12274-016-1236-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1855380629</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>671341922</cqvip_id><sourcerecordid>1855380629</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-ae61836aa229e793e0b7d4a8edf79987873b18da70d77351ce77707f4be631ab3</originalsourceid><addsrcrecordid>eNqNkU1LxDAQhoso-PkDvAW9eKlmkm4nOYr4BYIXPUrIttO1SzepSbuy_94s6wd4EHNIJvC878zwZtkx8HPgHC8iCIFFzqHMQch0bWV7oLXKeTrbXzWIYjfbj3HOeSmgUHvZy-OSQu8HckNru7ymnlydPiy-2p4YLX03Dq13zDds5ruaOet8FVZxsF1ks-DfHWsds6wm6hmNA1VDW7Hou2VyOcx2msTR0ed7kD3fXD9d3eUPj7f3V5cPeVVwPeSWSlCytFYITagl8SnWhVVUN5jmRoVyCqq2yGtEOYGKEJFjU0yplGCn8iA72_j2wb-NFAezaGNFXWcd-TEaUJOJVGln_Q9UotBcK5nQ01_o3I_BpUWM4ByKEkvARMGGqoKPMVBj-tAubFgZ4GadjdlkY1I2Zp2NgaQRG01MrJtR-HH-S3Ty2ejVu9lb0n13KhFkAVoI-QEFGZyn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2001467617</pqid></control><display><type>article</type><title>Overpotential-dependent shape evolution of gold nanocrystals grown in a deep eutectic solvent</title><source>SpringerLink Journals - AutoHoldings</source><creator>Wei, Lu ; Lu, Bangan ; Sun, Mingjun ; Tian, Na ; Zhou, Zhiyou ; Xu, Binbin ; Zhao, Xinsheng ; Sun, Shigang</creator><creatorcontrib>Wei, Lu ; Lu, Bangan ; Sun, Mingjun ; Tian, Na ; Zhou, Zhiyou ; Xu, Binbin ; Zhao, Xinsheng ; Sun, Shigang</creatorcontrib><description>This paper reports an overpotential-dependent shape evolution of gold nano-crystals (Au NCs) in a choline chloride-urea (ChCl-urea) based deep eutectic solvent (DES). It was found that the growth overpotentials play a key role in tuning the shape of Au NCs. The shape evolution of Au NCs successively from concave rhombic dodecahedra (RD) to concave cubes, octopods, cuboctahedral boxes, and finally, to hollow octahedra (OH) was achieved by carefully controlling the growth overpotentials in the range from -0.50 to -0.95 V (vs. Pt quasi-reference electrode). In addition, the presence of urea was important in the shape evolution of Au NCs. The surface structure of the as-prepared Au NCs was comprehensively characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and electrochemical studies. It was demonstrated that the electrocatalytic activity of the as-prepared Au NCs for D-glucose electrooxidation was sensitively dependent on their morphologies. The results illustrated that the dehydrogenated glucose adsorbed on concave RD and concave cubic Au NCs was preferentially transformed to gluconolactone at low electrode potentials. Subsequent gluconolactone oxidation occurred favorably on octopods with {111}-truncated arms and hollow OH at high electrode potential. This study opens up a new approach to develop the surface-structure-controlled growth of Au NCs by combining DES with electrochemical techniques. In addition, it is significant for the tuning of the electrocatalytic properties of NCs.</description><identifier>ISSN: 1998-0124</identifier><identifier>EISSN: 1998-0000</identifier><identifier>DOI: 10.1007/s12274-016-1236-1</identifier><language>eng</language><publisher>Beijing: Tsinghua University Press</publisher><subject>Atomic/Molecular Structure and Spectra ; Biomedicine ; Biotechnology ; Chemistry and Materials Science ; Choline ; Condensed Matter Physics ; Crystals ; Cubes ; Dehydrogenation ; Electrochemistry ; Electrode potentials ; Electrodes ; Electron microscopy ; Eutectics ; Evolution ; Gluconolactone ; Glucose ; Gold ; Materials Science ; Nanocrystals ; Nanotechnology ; Oxidation ; Research Article ; Scanning electron microscopy ; Solvents ; Surface structure ; Transmission electron microscopy ; Tuning ; Urea</subject><ispartof>Nano research, 2016-11, Vol.9 (11), p.3547-3557</ispartof><rights>Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2016</rights><rights>Nano Research is a copyright of Springer, (2016). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-ae61836aa229e793e0b7d4a8edf79987873b18da70d77351ce77707f4be631ab3</citedby><cites>FETCH-LOGICAL-c409t-ae61836aa229e793e0b7d4a8edf79987873b18da70d77351ce77707f4be631ab3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/71233X/71233X.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12274-016-1236-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12274-016-1236-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Wei, Lu</creatorcontrib><creatorcontrib>Lu, Bangan</creatorcontrib><creatorcontrib>Sun, Mingjun</creatorcontrib><creatorcontrib>Tian, Na</creatorcontrib><creatorcontrib>Zhou, Zhiyou</creatorcontrib><creatorcontrib>Xu, Binbin</creatorcontrib><creatorcontrib>Zhao, Xinsheng</creatorcontrib><creatorcontrib>Sun, Shigang</creatorcontrib><title>Overpotential-dependent shape evolution of gold nanocrystals grown in a deep eutectic solvent</title><title>Nano research</title><addtitle>Nano Res</addtitle><addtitle>Nano Research</addtitle><description>This paper reports an overpotential-dependent shape evolution of gold nano-crystals (Au NCs) in a choline chloride-urea (ChCl-urea) based deep eutectic solvent (DES). It was found that the growth overpotentials play a key role in tuning the shape of Au NCs. The shape evolution of Au NCs successively from concave rhombic dodecahedra (RD) to concave cubes, octopods, cuboctahedral boxes, and finally, to hollow octahedra (OH) was achieved by carefully controlling the growth overpotentials in the range from -0.50 to -0.95 V (vs. Pt quasi-reference electrode). In addition, the presence of urea was important in the shape evolution of Au NCs. The surface structure of the as-prepared Au NCs was comprehensively characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and electrochemical studies. It was demonstrated that the electrocatalytic activity of the as-prepared Au NCs for D-glucose electrooxidation was sensitively dependent on their morphologies. The results illustrated that the dehydrogenated glucose adsorbed on concave RD and concave cubic Au NCs was preferentially transformed to gluconolactone at low electrode potentials. Subsequent gluconolactone oxidation occurred favorably on octopods with {111}-truncated arms and hollow OH at high electrode potential. This study opens up a new approach to develop the surface-structure-controlled growth of Au NCs by combining DES with electrochemical techniques. In addition, it is significant for the tuning of the electrocatalytic properties of NCs.</description><subject>Atomic/Molecular Structure and Spectra</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>Chemistry and Materials Science</subject><subject>Choline</subject><subject>Condensed Matter Physics</subject><subject>Crystals</subject><subject>Cubes</subject><subject>Dehydrogenation</subject><subject>Electrochemistry</subject><subject>Electrode potentials</subject><subject>Electrodes</subject><subject>Electron microscopy</subject><subject>Eutectics</subject><subject>Evolution</subject><subject>Gluconolactone</subject><subject>Glucose</subject><subject>Gold</subject><subject>Materials Science</subject><subject>Nanocrystals</subject><subject>Nanotechnology</subject><subject>Oxidation</subject><subject>Research Article</subject><subject>Scanning electron microscopy</subject><subject>Solvents</subject><subject>Surface structure</subject><subject>Transmission electron microscopy</subject><subject>Tuning</subject><subject>Urea</subject><issn>1998-0124</issn><issn>1998-0000</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNkU1LxDAQhoso-PkDvAW9eKlmkm4nOYr4BYIXPUrIttO1SzepSbuy_94s6wd4EHNIJvC878zwZtkx8HPgHC8iCIFFzqHMQch0bWV7oLXKeTrbXzWIYjfbj3HOeSmgUHvZy-OSQu8HckNru7ymnlydPiy-2p4YLX03Dq13zDds5ruaOet8FVZxsF1ks-DfHWsds6wm6hmNA1VDW7Hou2VyOcx2msTR0ed7kD3fXD9d3eUPj7f3V5cPeVVwPeSWSlCytFYITagl8SnWhVVUN5jmRoVyCqq2yGtEOYGKEJFjU0yplGCn8iA72_j2wb-NFAezaGNFXWcd-TEaUJOJVGln_Q9UotBcK5nQ01_o3I_BpUWM4ByKEkvARMGGqoKPMVBj-tAubFgZ4GadjdlkY1I2Zp2NgaQRG01MrJtR-HH-S3Ty2ejVu9lb0n13KhFkAVoI-QEFGZyn</recordid><startdate>20161101</startdate><enddate>20161101</enddate><creator>Wei, Lu</creator><creator>Lu, Bangan</creator><creator>Sun, Mingjun</creator><creator>Tian, Na</creator><creator>Zhou, Zhiyou</creator><creator>Xu, Binbin</creator><creator>Zhao, Xinsheng</creator><creator>Sun, Shigang</creator><general>Tsinghua University Press</general><general>Springer Nature B.V</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SE</scope><scope>7SR</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20161101</creationdate><title>Overpotential-dependent shape evolution of gold nanocrystals grown in a deep eutectic solvent</title><author>Wei, Lu ; Lu, Bangan ; Sun, Mingjun ; Tian, Na ; Zhou, Zhiyou ; Xu, Binbin ; Zhao, Xinsheng ; Sun, Shigang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-ae61836aa229e793e0b7d4a8edf79987873b18da70d77351ce77707f4be631ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Atomic/Molecular Structure and Spectra</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>Chemistry and Materials Science</topic><topic>Choline</topic><topic>Condensed Matter Physics</topic><topic>Crystals</topic><topic>Cubes</topic><topic>Dehydrogenation</topic><topic>Electrochemistry</topic><topic>Electrode potentials</topic><topic>Electrodes</topic><topic>Electron microscopy</topic><topic>Eutectics</topic><topic>Evolution</topic><topic>Gluconolactone</topic><topic>Glucose</topic><topic>Gold</topic><topic>Materials Science</topic><topic>Nanocrystals</topic><topic>Nanotechnology</topic><topic>Oxidation</topic><topic>Research Article</topic><topic>Scanning electron microscopy</topic><topic>Solvents</topic><topic>Surface structure</topic><topic>Transmission electron microscopy</topic><topic>Tuning</topic><topic>Urea</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wei, Lu</creatorcontrib><creatorcontrib>Lu, Bangan</creatorcontrib><creatorcontrib>Sun, Mingjun</creatorcontrib><creatorcontrib>Tian, Na</creatorcontrib><creatorcontrib>Zhou, Zhiyou</creatorcontrib><creatorcontrib>Xu, Binbin</creatorcontrib><creatorcontrib>Zhao, Xinsheng</creatorcontrib><creatorcontrib>Sun, Shigang</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Nano research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wei, Lu</au><au>Lu, Bangan</au><au>Sun, Mingjun</au><au>Tian, Na</au><au>Zhou, Zhiyou</au><au>Xu, Binbin</au><au>Zhao, Xinsheng</au><au>Sun, Shigang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Overpotential-dependent shape evolution of gold nanocrystals grown in a deep eutectic solvent</atitle><jtitle>Nano research</jtitle><stitle>Nano Res</stitle><addtitle>Nano Research</addtitle><date>2016-11-01</date><risdate>2016</risdate><volume>9</volume><issue>11</issue><spage>3547</spage><epage>3557</epage><pages>3547-3557</pages><issn>1998-0124</issn><eissn>1998-0000</eissn><abstract>This paper reports an overpotential-dependent shape evolution of gold nano-crystals (Au NCs) in a choline chloride-urea (ChCl-urea) based deep eutectic solvent (DES). It was found that the growth overpotentials play a key role in tuning the shape of Au NCs. The shape evolution of Au NCs successively from concave rhombic dodecahedra (RD) to concave cubes, octopods, cuboctahedral boxes, and finally, to hollow octahedra (OH) was achieved by carefully controlling the growth overpotentials in the range from -0.50 to -0.95 V (vs. Pt quasi-reference electrode). In addition, the presence of urea was important in the shape evolution of Au NCs. The surface structure of the as-prepared Au NCs was comprehensively characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and electrochemical studies. It was demonstrated that the electrocatalytic activity of the as-prepared Au NCs for D-glucose electrooxidation was sensitively dependent on their morphologies. The results illustrated that the dehydrogenated glucose adsorbed on concave RD and concave cubic Au NCs was preferentially transformed to gluconolactone at low electrode potentials. Subsequent gluconolactone oxidation occurred favorably on octopods with {111}-truncated arms and hollow OH at high electrode potential. This study opens up a new approach to develop the surface-structure-controlled growth of Au NCs by combining DES with electrochemical techniques. In addition, it is significant for the tuning of the electrocatalytic properties of NCs.</abstract><cop>Beijing</cop><pub>Tsinghua University Press</pub><doi>10.1007/s12274-016-1236-1</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1998-0124 |
ispartof | Nano research, 2016-11, Vol.9 (11), p.3547-3557 |
issn | 1998-0124 1998-0000 |
language | eng |
recordid | cdi_proquest_miscellaneous_1855380629 |
source | SpringerLink Journals - AutoHoldings |
subjects | Atomic/Molecular Structure and Spectra Biomedicine Biotechnology Chemistry and Materials Science Choline Condensed Matter Physics Crystals Cubes Dehydrogenation Electrochemistry Electrode potentials Electrodes Electron microscopy Eutectics Evolution Gluconolactone Glucose Gold Materials Science Nanocrystals Nanotechnology Oxidation Research Article Scanning electron microscopy Solvents Surface structure Transmission electron microscopy Tuning Urea |
title | Overpotential-dependent shape evolution of gold nanocrystals grown in a deep eutectic solvent |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T03%3A16%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Overpotential-dependent%20shape%20evolution%20of%20gold%20nanocrystals%20grown%20in%20a%20deep%20eutectic%20solvent&rft.jtitle=Nano%20research&rft.au=Wei,%20Lu&rft.date=2016-11-01&rft.volume=9&rft.issue=11&rft.spage=3547&rft.epage=3557&rft.pages=3547-3557&rft.issn=1998-0124&rft.eissn=1998-0000&rft_id=info:doi/10.1007/s12274-016-1236-1&rft_dat=%3Cproquest_cross%3E1855380629%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2001467617&rft_id=info:pmid/&rft_cqvip_id=671341922&rfr_iscdi=true |