Brightness and Photostability of Emerging Red and Near-IR Fluorescent Nanomaterials for Bioimaging
Many novel fluorescent nanomaterials exhibit radically different optical properties compared to organic fluorophores that are still the most extensively used class of fluorophores in biology today. Assessing the practical impact of these optical differences for bioimaging experiments is challenging...
Gespeichert in:
Veröffentlicht in: | Advanced optical materials 2016-10, Vol.4 (10), p.1549-1557 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1557 |
---|---|
container_issue | 10 |
container_start_page | 1549 |
container_title | Advanced optical materials |
container_volume | 4 |
creator | Reineck, Philipp Francis, Adam Orth, Antony Lau, Desmond Wai Mo Nixon-Luke, Reece David Valmont Rastogi, Ishan Das Razali, Wan Aizuddin Wan Cordina, Nicole Maree Parker, Lindsay Marie Sreenivasan, Varun Kumaraswamy Annayya Brown, Louise Jennifer Gibson, Brant Cameron |
description | Many novel fluorescent nanomaterials exhibit radically different optical properties compared to organic fluorophores that are still the most extensively used class of fluorophores in biology today. Assessing the practical impact of these optical differences for bioimaging experiments is challenging due to a lack of published quantitative benchmarking data. This study therefore directly and quantitatively compares the brightness and photostability of representatives from seven classes of fluorescent materials in spectroscopy and fluorescence microscopy experiments for the first time. These material classes are: organic dyes, semiconductor quantum dots, fluorescent beads, carbon dots, gold nanoclusters, nanodiamonds, and nanorubies. The relative brightness of each material is determined and the minimum material concentrations required to generate sufficient contrast in a fluorescence microscopy image are assessed. The influence of optical filters used for imaging is also discussed and suitable filter combinations are identified. The photostability of all materials is determined under typical imaging conditions and the number of images that can be acquired is inferred. The results are expected to facilitate the transition of novel fluorescent materials from physics and chemistry into biology laboratories.
Organic fluorophores show high fluorescence brightness and poor photostability. Diamond and ruby nanoparticles are extremely photostable, but are not as bright as organic fluorophores or semiconductor quantum dots. While most fluorescent materials investigated in this study photobleach within seconds or a few minutes, diamond and ruby nanoparticles can be imaged indefinitely in biological systems. |
doi_str_mv | 10.1002/adom.201600212 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1855377697</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1855377697</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4542-efea97dce13c4ef3125894c4ec969c6fcbca37f03395e14e153a94da98e7c4563</originalsourceid><addsrcrecordid>eNqFkMFPwjAUhxujiQS9em7ixcuwXbeVHgEBTRAM0XhsSvcGxW3FdkT57y1iiPHiqe813_f6-kPoipIOJSS-VbmtOjGhWWhofIJaMRVpRAmnp7_qc3Tp_ZoQEhomEt5Ci74zy1VTg_dY1Tl-WtnG-kYtTGmaHbYFHlbglqZe4jnk38gUlIse5nhUbq0Dr6Fu8FTVtlINOKNKjwvrcN9YU6m9eIHOinALlz9nG72Mhs-D-2gyGz8MepNIJ2kSR1CAEjzXQJlOoGA0TrsiCaUWmdBZoRdaMV4QxkQKNAGaMiWSXIku8DAhY210c5i7cfZ9C76RlQnblaWqwW69pN00ZZxnggf0-g-6tltXh-0CxUjMExbeaaPOgdLOeu-gkBsX_uR2khK5T13uU5fH1IMgDsKHKWH3Dy17d7PH3250cI1v4PPoKvcmM854Kl-n41ARkU2eJnLAvgDSsZTj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1830274303</pqid></control><display><type>article</type><title>Brightness and Photostability of Emerging Red and Near-IR Fluorescent Nanomaterials for Bioimaging</title><source>Wiley Online Library All Journals</source><creator>Reineck, Philipp ; Francis, Adam ; Orth, Antony ; Lau, Desmond Wai Mo ; Nixon-Luke, Reece David Valmont ; Rastogi, Ishan Das ; Razali, Wan Aizuddin Wan ; Cordina, Nicole Maree ; Parker, Lindsay Marie ; Sreenivasan, Varun Kumaraswamy Annayya ; Brown, Louise Jennifer ; Gibson, Brant Cameron</creator><creatorcontrib>Reineck, Philipp ; Francis, Adam ; Orth, Antony ; Lau, Desmond Wai Mo ; Nixon-Luke, Reece David Valmont ; Rastogi, Ishan Das ; Razali, Wan Aizuddin Wan ; Cordina, Nicole Maree ; Parker, Lindsay Marie ; Sreenivasan, Varun Kumaraswamy Annayya ; Brown, Louise Jennifer ; Gibson, Brant Cameron</creatorcontrib><description>Many novel fluorescent nanomaterials exhibit radically different optical properties compared to organic fluorophores that are still the most extensively used class of fluorophores in biology today. Assessing the practical impact of these optical differences for bioimaging experiments is challenging due to a lack of published quantitative benchmarking data. This study therefore directly and quantitatively compares the brightness and photostability of representatives from seven classes of fluorescent materials in spectroscopy and fluorescence microscopy experiments for the first time. These material classes are: organic dyes, semiconductor quantum dots, fluorescent beads, carbon dots, gold nanoclusters, nanodiamonds, and nanorubies. The relative brightness of each material is determined and the minimum material concentrations required to generate sufficient contrast in a fluorescence microscopy image are assessed. The influence of optical filters used for imaging is also discussed and suitable filter combinations are identified. The photostability of all materials is determined under typical imaging conditions and the number of images that can be acquired is inferred. The results are expected to facilitate the transition of novel fluorescent materials from physics and chemistry into biology laboratories.
Organic fluorophores show high fluorescence brightness and poor photostability. Diamond and ruby nanoparticles are extremely photostable, but are not as bright as organic fluorophores or semiconductor quantum dots. While most fluorescent materials investigated in this study photobleach within seconds or a few minutes, diamond and ruby nanoparticles can be imaged indefinitely in biological systems.</description><identifier>ISSN: 2195-1071</identifier><identifier>EISSN: 2195-1071</identifier><identifier>DOI: 10.1002/adom.201600212</identifier><language>eng</language><publisher>Weinheim: Blackwell Publishing Ltd</publisher><subject>bioimaging ; Brightness ; Chemical compounds ; Fluorescence ; Imaging ; Microscopy ; Nanomaterials ; Nanostructure ; Optics ; Organic semiconductors ; photostability ; Quantum dots ; Semiconductors</subject><ispartof>Advanced optical materials, 2016-10, Vol.4 (10), p.1549-1557</ispartof><rights>2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4542-efea97dce13c4ef3125894c4ec969c6fcbca37f03395e14e153a94da98e7c4563</citedby><cites>FETCH-LOGICAL-c4542-efea97dce13c4ef3125894c4ec969c6fcbca37f03395e14e153a94da98e7c4563</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadom.201600212$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadom.201600212$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Reineck, Philipp</creatorcontrib><creatorcontrib>Francis, Adam</creatorcontrib><creatorcontrib>Orth, Antony</creatorcontrib><creatorcontrib>Lau, Desmond Wai Mo</creatorcontrib><creatorcontrib>Nixon-Luke, Reece David Valmont</creatorcontrib><creatorcontrib>Rastogi, Ishan Das</creatorcontrib><creatorcontrib>Razali, Wan Aizuddin Wan</creatorcontrib><creatorcontrib>Cordina, Nicole Maree</creatorcontrib><creatorcontrib>Parker, Lindsay Marie</creatorcontrib><creatorcontrib>Sreenivasan, Varun Kumaraswamy Annayya</creatorcontrib><creatorcontrib>Brown, Louise Jennifer</creatorcontrib><creatorcontrib>Gibson, Brant Cameron</creatorcontrib><title>Brightness and Photostability of Emerging Red and Near-IR Fluorescent Nanomaterials for Bioimaging</title><title>Advanced optical materials</title><addtitle>Advanced Optical Materials</addtitle><description>Many novel fluorescent nanomaterials exhibit radically different optical properties compared to organic fluorophores that are still the most extensively used class of fluorophores in biology today. Assessing the practical impact of these optical differences for bioimaging experiments is challenging due to a lack of published quantitative benchmarking data. This study therefore directly and quantitatively compares the brightness and photostability of representatives from seven classes of fluorescent materials in spectroscopy and fluorescence microscopy experiments for the first time. These material classes are: organic dyes, semiconductor quantum dots, fluorescent beads, carbon dots, gold nanoclusters, nanodiamonds, and nanorubies. The relative brightness of each material is determined and the minimum material concentrations required to generate sufficient contrast in a fluorescence microscopy image are assessed. The influence of optical filters used for imaging is also discussed and suitable filter combinations are identified. The photostability of all materials is determined under typical imaging conditions and the number of images that can be acquired is inferred. The results are expected to facilitate the transition of novel fluorescent materials from physics and chemistry into biology laboratories.
Organic fluorophores show high fluorescence brightness and poor photostability. Diamond and ruby nanoparticles are extremely photostable, but are not as bright as organic fluorophores or semiconductor quantum dots. While most fluorescent materials investigated in this study photobleach within seconds or a few minutes, diamond and ruby nanoparticles can be imaged indefinitely in biological systems.</description><subject>bioimaging</subject><subject>Brightness</subject><subject>Chemical compounds</subject><subject>Fluorescence</subject><subject>Imaging</subject><subject>Microscopy</subject><subject>Nanomaterials</subject><subject>Nanostructure</subject><subject>Optics</subject><subject>Organic semiconductors</subject><subject>photostability</subject><subject>Quantum dots</subject><subject>Semiconductors</subject><issn>2195-1071</issn><issn>2195-1071</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkMFPwjAUhxujiQS9em7ixcuwXbeVHgEBTRAM0XhsSvcGxW3FdkT57y1iiPHiqe813_f6-kPoipIOJSS-VbmtOjGhWWhofIJaMRVpRAmnp7_qc3Tp_ZoQEhomEt5Ci74zy1VTg_dY1Tl-WtnG-kYtTGmaHbYFHlbglqZe4jnk38gUlIse5nhUbq0Dr6Fu8FTVtlINOKNKjwvrcN9YU6m9eIHOinALlz9nG72Mhs-D-2gyGz8MepNIJ2kSR1CAEjzXQJlOoGA0TrsiCaUWmdBZoRdaMV4QxkQKNAGaMiWSXIku8DAhY210c5i7cfZ9C76RlQnblaWqwW69pN00ZZxnggf0-g-6tltXh-0CxUjMExbeaaPOgdLOeu-gkBsX_uR2khK5T13uU5fH1IMgDsKHKWH3Dy17d7PH3250cI1v4PPoKvcmM854Kl-n41ARkU2eJnLAvgDSsZTj</recordid><startdate>201610</startdate><enddate>201610</enddate><creator>Reineck, Philipp</creator><creator>Francis, Adam</creator><creator>Orth, Antony</creator><creator>Lau, Desmond Wai Mo</creator><creator>Nixon-Luke, Reece David Valmont</creator><creator>Rastogi, Ishan Das</creator><creator>Razali, Wan Aizuddin Wan</creator><creator>Cordina, Nicole Maree</creator><creator>Parker, Lindsay Marie</creator><creator>Sreenivasan, Varun Kumaraswamy Annayya</creator><creator>Brown, Louise Jennifer</creator><creator>Gibson, Brant Cameron</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>201610</creationdate><title>Brightness and Photostability of Emerging Red and Near-IR Fluorescent Nanomaterials for Bioimaging</title><author>Reineck, Philipp ; Francis, Adam ; Orth, Antony ; Lau, Desmond Wai Mo ; Nixon-Luke, Reece David Valmont ; Rastogi, Ishan Das ; Razali, Wan Aizuddin Wan ; Cordina, Nicole Maree ; Parker, Lindsay Marie ; Sreenivasan, Varun Kumaraswamy Annayya ; Brown, Louise Jennifer ; Gibson, Brant Cameron</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4542-efea97dce13c4ef3125894c4ec969c6fcbca37f03395e14e153a94da98e7c4563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>bioimaging</topic><topic>Brightness</topic><topic>Chemical compounds</topic><topic>Fluorescence</topic><topic>Imaging</topic><topic>Microscopy</topic><topic>Nanomaterials</topic><topic>Nanostructure</topic><topic>Optics</topic><topic>Organic semiconductors</topic><topic>photostability</topic><topic>Quantum dots</topic><topic>Semiconductors</topic><toplevel>online_resources</toplevel><creatorcontrib>Reineck, Philipp</creatorcontrib><creatorcontrib>Francis, Adam</creatorcontrib><creatorcontrib>Orth, Antony</creatorcontrib><creatorcontrib>Lau, Desmond Wai Mo</creatorcontrib><creatorcontrib>Nixon-Luke, Reece David Valmont</creatorcontrib><creatorcontrib>Rastogi, Ishan Das</creatorcontrib><creatorcontrib>Razali, Wan Aizuddin Wan</creatorcontrib><creatorcontrib>Cordina, Nicole Maree</creatorcontrib><creatorcontrib>Parker, Lindsay Marie</creatorcontrib><creatorcontrib>Sreenivasan, Varun Kumaraswamy Annayya</creatorcontrib><creatorcontrib>Brown, Louise Jennifer</creatorcontrib><creatorcontrib>Gibson, Brant Cameron</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced optical materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reineck, Philipp</au><au>Francis, Adam</au><au>Orth, Antony</au><au>Lau, Desmond Wai Mo</au><au>Nixon-Luke, Reece David Valmont</au><au>Rastogi, Ishan Das</au><au>Razali, Wan Aizuddin Wan</au><au>Cordina, Nicole Maree</au><au>Parker, Lindsay Marie</au><au>Sreenivasan, Varun Kumaraswamy Annayya</au><au>Brown, Louise Jennifer</au><au>Gibson, Brant Cameron</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Brightness and Photostability of Emerging Red and Near-IR Fluorescent Nanomaterials for Bioimaging</atitle><jtitle>Advanced optical materials</jtitle><addtitle>Advanced Optical Materials</addtitle><date>2016-10</date><risdate>2016</risdate><volume>4</volume><issue>10</issue><spage>1549</spage><epage>1557</epage><pages>1549-1557</pages><issn>2195-1071</issn><eissn>2195-1071</eissn><abstract>Many novel fluorescent nanomaterials exhibit radically different optical properties compared to organic fluorophores that are still the most extensively used class of fluorophores in biology today. Assessing the practical impact of these optical differences for bioimaging experiments is challenging due to a lack of published quantitative benchmarking data. This study therefore directly and quantitatively compares the brightness and photostability of representatives from seven classes of fluorescent materials in spectroscopy and fluorescence microscopy experiments for the first time. These material classes are: organic dyes, semiconductor quantum dots, fluorescent beads, carbon dots, gold nanoclusters, nanodiamonds, and nanorubies. The relative brightness of each material is determined and the minimum material concentrations required to generate sufficient contrast in a fluorescence microscopy image are assessed. The influence of optical filters used for imaging is also discussed and suitable filter combinations are identified. The photostability of all materials is determined under typical imaging conditions and the number of images that can be acquired is inferred. The results are expected to facilitate the transition of novel fluorescent materials from physics and chemistry into biology laboratories.
Organic fluorophores show high fluorescence brightness and poor photostability. Diamond and ruby nanoparticles are extremely photostable, but are not as bright as organic fluorophores or semiconductor quantum dots. While most fluorescent materials investigated in this study photobleach within seconds or a few minutes, diamond and ruby nanoparticles can be imaged indefinitely in biological systems.</abstract><cop>Weinheim</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/adom.201600212</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2195-1071 |
ispartof | Advanced optical materials, 2016-10, Vol.4 (10), p.1549-1557 |
issn | 2195-1071 2195-1071 |
language | eng |
recordid | cdi_proquest_miscellaneous_1855377697 |
source | Wiley Online Library All Journals |
subjects | bioimaging Brightness Chemical compounds Fluorescence Imaging Microscopy Nanomaterials Nanostructure Optics Organic semiconductors photostability Quantum dots Semiconductors |
title | Brightness and Photostability of Emerging Red and Near-IR Fluorescent Nanomaterials for Bioimaging |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T02%3A38%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Brightness%20and%20Photostability%20of%20Emerging%20Red%20and%20Near-IR%20Fluorescent%20Nanomaterials%20for%20Bioimaging&rft.jtitle=Advanced%20optical%20materials&rft.au=Reineck,%20Philipp&rft.date=2016-10&rft.volume=4&rft.issue=10&rft.spage=1549&rft.epage=1557&rft.pages=1549-1557&rft.issn=2195-1071&rft.eissn=2195-1071&rft_id=info:doi/10.1002/adom.201600212&rft_dat=%3Cproquest_cross%3E1855377697%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1830274303&rft_id=info:pmid/&rfr_iscdi=true |