Robust Projective Template Matching
In this paper, we address the problem of projective template matching which aims to estimate parameters of projective transformation. Although homography can be estimated by combining key-point-based local features and RANSAC, it can hardly be solved with feature-less images or high outlier rate ima...
Gespeichert in:
Veröffentlicht in: | IEICE Transactions on Information and Systems 2016/09/01, Vol.E99.D(9), pp.2341-2350 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2350 |
---|---|
container_issue | 9 |
container_start_page | 2341 |
container_title | IEICE Transactions on Information and Systems |
container_volume | E99.D |
creator | ZHANG, Chao AKASHI, Takuya |
description | In this paper, we address the problem of projective template matching which aims to estimate parameters of projective transformation. Although homography can be estimated by combining key-point-based local features and RANSAC, it can hardly be solved with feature-less images or high outlier rate images. Estimating the projective transformation remains a difficult problem due to high-dimensionality and strong non-convexity. Our approach is to quantize the parameters of projective transformation with binary finite field and search for an appropriate solution as the final result over the discrete sampling set. The benefit is that we can avoid searching among a huge amount of potential candidates. Furthermore, in order to approximate the global optimum more efficiently, we develop a level-wise adaptive sampling (LAS) method under genetic algorithm framework. With LAS, the individuals are uniformly selected from each fitness level and the elite solution finally converges to the global optimum. In the experiment, we compare our method against the popular projective solution and systematically analyse our method. The result shows that our method can provide convincing performance and holds wider application scope. |
doi_str_mv | 10.1587/transinf.2016EDP7038 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1855376513</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1855376513</sourcerecordid><originalsourceid>FETCH-LOGICAL-c570t-a14d08c831f9b5997b7ca0361868d39e895d9221e7353cb346027526e473af8c3</originalsourceid><addsrcrecordid>eNpNkM1OAjEYRRujiYi-gQsSN24G-7XTv6XhR00wEoPrplO-gSHDDLbFxLcXAyKruznn3uQScgu0D0KrhxRcE6um7DMKcjScKsr1GemAykUGXMI56VADMtOCs0tyFeOKUtAMRIfcvbfFNqbeNLQr9Kn6wt4M15vaJey9uuSXVbO4JhelqyPeHLJLPsaj2eA5m7w9vQweJ5kXiqbMQT6n2msOpSmEMapQ3tHdvJZ6zg1qI-aGMUDFBfcFzyVlSjCJueKu1J53yf2-dxPazy3GZNdV9FjXrsF2Gy1oIbiSAvgOzfeoD22MAUu7CdXahW8L1P5-Yv8-sSef7LTpXlvF5BZ4lFxIla_xXxoZY4fWHPKk4oj6pQsWG_4DCnFx2A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1855376513</pqid></control><display><type>article</type><title>Robust Projective Template Matching</title><source>J-STAGE (Japan Science & Technology Information Aggregator, Electronic) Freely Available Titles - Japanese</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>ZHANG, Chao ; AKASHI, Takuya</creator><creatorcontrib>ZHANG, Chao ; AKASHI, Takuya</creatorcontrib><description>In this paper, we address the problem of projective template matching which aims to estimate parameters of projective transformation. Although homography can be estimated by combining key-point-based local features and RANSAC, it can hardly be solved with feature-less images or high outlier rate images. Estimating the projective transformation remains a difficult problem due to high-dimensionality and strong non-convexity. Our approach is to quantize the parameters of projective transformation with binary finite field and search for an appropriate solution as the final result over the discrete sampling set. The benefit is that we can avoid searching among a huge amount of potential candidates. Furthermore, in order to approximate the global optimum more efficiently, we develop a level-wise adaptive sampling (LAS) method under genetic algorithm framework. With LAS, the individuals are uniformly selected from each fitness level and the elite solution finally converges to the global optimum. In the experiment, we compare our method against the popular projective solution and systematically analyse our method. The result shows that our method can provide convincing performance and holds wider application scope.</description><identifier>ISSN: 0916-8532</identifier><identifier>EISSN: 1745-1361</identifier><identifier>DOI: 10.1587/transinf.2016EDP7038</identifier><language>eng</language><publisher>The Institute of Electronics, Information and Communication Engineers</publisher><subject>Approximation ; binary finite field ; homography estimation ; level-wise adaptive sampling ; Optimization ; Parameters ; projective template matching ; Sampling ; Searching ; Template matching ; Transformations</subject><ispartof>IEICE Transactions on Information and Systems, 2016/09/01, Vol.E99.D(9), pp.2341-2350</ispartof><rights>2016 The Institute of Electronics, Information and Communication Engineers</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c570t-a14d08c831f9b5997b7ca0361868d39e895d9221e7353cb346027526e473af8c3</citedby><cites>FETCH-LOGICAL-c570t-a14d08c831f9b5997b7ca0361868d39e895d9221e7353cb346027526e473af8c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,1877,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>ZHANG, Chao</creatorcontrib><creatorcontrib>AKASHI, Takuya</creatorcontrib><title>Robust Projective Template Matching</title><title>IEICE Transactions on Information and Systems</title><addtitle>IEICE Trans. Inf. & Syst.</addtitle><description>In this paper, we address the problem of projective template matching which aims to estimate parameters of projective transformation. Although homography can be estimated by combining key-point-based local features and RANSAC, it can hardly be solved with feature-less images or high outlier rate images. Estimating the projective transformation remains a difficult problem due to high-dimensionality and strong non-convexity. Our approach is to quantize the parameters of projective transformation with binary finite field and search for an appropriate solution as the final result over the discrete sampling set. The benefit is that we can avoid searching among a huge amount of potential candidates. Furthermore, in order to approximate the global optimum more efficiently, we develop a level-wise adaptive sampling (LAS) method under genetic algorithm framework. With LAS, the individuals are uniformly selected from each fitness level and the elite solution finally converges to the global optimum. In the experiment, we compare our method against the popular projective solution and systematically analyse our method. The result shows that our method can provide convincing performance and holds wider application scope.</description><subject>Approximation</subject><subject>binary finite field</subject><subject>homography estimation</subject><subject>level-wise adaptive sampling</subject><subject>Optimization</subject><subject>Parameters</subject><subject>projective template matching</subject><subject>Sampling</subject><subject>Searching</subject><subject>Template matching</subject><subject>Transformations</subject><issn>0916-8532</issn><issn>1745-1361</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNpNkM1OAjEYRRujiYi-gQsSN24G-7XTv6XhR00wEoPrplO-gSHDDLbFxLcXAyKruznn3uQScgu0D0KrhxRcE6um7DMKcjScKsr1GemAykUGXMI56VADMtOCs0tyFeOKUtAMRIfcvbfFNqbeNLQr9Kn6wt4M15vaJey9uuSXVbO4JhelqyPeHLJLPsaj2eA5m7w9vQweJ5kXiqbMQT6n2msOpSmEMapQ3tHdvJZ6zg1qI-aGMUDFBfcFzyVlSjCJueKu1J53yf2-dxPazy3GZNdV9FjXrsF2Gy1oIbiSAvgOzfeoD22MAUu7CdXahW8L1P5-Yv8-sSef7LTpXlvF5BZ4lFxIla_xXxoZY4fWHPKk4oj6pQsWG_4DCnFx2A</recordid><startdate>2016</startdate><enddate>2016</enddate><creator>ZHANG, Chao</creator><creator>AKASHI, Takuya</creator><general>The Institute of Electronics, Information and Communication Engineers</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>2016</creationdate><title>Robust Projective Template Matching</title><author>ZHANG, Chao ; AKASHI, Takuya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c570t-a14d08c831f9b5997b7ca0361868d39e895d9221e7353cb346027526e473af8c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Approximation</topic><topic>binary finite field</topic><topic>homography estimation</topic><topic>level-wise adaptive sampling</topic><topic>Optimization</topic><topic>Parameters</topic><topic>projective template matching</topic><topic>Sampling</topic><topic>Searching</topic><topic>Template matching</topic><topic>Transformations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>ZHANG, Chao</creatorcontrib><creatorcontrib>AKASHI, Takuya</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEICE Transactions on Information and Systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>ZHANG, Chao</au><au>AKASHI, Takuya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust Projective Template Matching</atitle><jtitle>IEICE Transactions on Information and Systems</jtitle><addtitle>IEICE Trans. Inf. & Syst.</addtitle><date>2016</date><risdate>2016</risdate><volume>E99.D</volume><issue>9</issue><spage>2341</spage><epage>2350</epage><pages>2341-2350</pages><issn>0916-8532</issn><eissn>1745-1361</eissn><abstract>In this paper, we address the problem of projective template matching which aims to estimate parameters of projective transformation. Although homography can be estimated by combining key-point-based local features and RANSAC, it can hardly be solved with feature-less images or high outlier rate images. Estimating the projective transformation remains a difficult problem due to high-dimensionality and strong non-convexity. Our approach is to quantize the parameters of projective transformation with binary finite field and search for an appropriate solution as the final result over the discrete sampling set. The benefit is that we can avoid searching among a huge amount of potential candidates. Furthermore, in order to approximate the global optimum more efficiently, we develop a level-wise adaptive sampling (LAS) method under genetic algorithm framework. With LAS, the individuals are uniformly selected from each fitness level and the elite solution finally converges to the global optimum. In the experiment, we compare our method against the popular projective solution and systematically analyse our method. The result shows that our method can provide convincing performance and holds wider application scope.</abstract><pub>The Institute of Electronics, Information and Communication Engineers</pub><doi>10.1587/transinf.2016EDP7038</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0916-8532 |
ispartof | IEICE Transactions on Information and Systems, 2016/09/01, Vol.E99.D(9), pp.2341-2350 |
issn | 0916-8532 1745-1361 |
language | eng |
recordid | cdi_proquest_miscellaneous_1855376513 |
source | J-STAGE (Japan Science & Technology Information Aggregator, Electronic) Freely Available Titles - Japanese; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Approximation binary finite field homography estimation level-wise adaptive sampling Optimization Parameters projective template matching Sampling Searching Template matching Transformations |
title | Robust Projective Template Matching |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T06%3A02%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20Projective%20Template%20Matching&rft.jtitle=IEICE%20Transactions%20on%20Information%20and%20Systems&rft.au=ZHANG,%20Chao&rft.date=2016&rft.volume=E99.D&rft.issue=9&rft.spage=2341&rft.epage=2350&rft.pages=2341-2350&rft.issn=0916-8532&rft.eissn=1745-1361&rft_id=info:doi/10.1587/transinf.2016EDP7038&rft_dat=%3Cproquest_cross%3E1855376513%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1855376513&rft_id=info:pmid/&rfr_iscdi=true |