Robust Projective Template Matching

In this paper, we address the problem of projective template matching which aims to estimate parameters of projective transformation. Although homography can be estimated by combining key-point-based local features and RANSAC, it can hardly be solved with feature-less images or high outlier rate ima...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEICE Transactions on Information and Systems 2016/09/01, Vol.E99.D(9), pp.2341-2350
Hauptverfasser: ZHANG, Chao, AKASHI, Takuya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2350
container_issue 9
container_start_page 2341
container_title IEICE Transactions on Information and Systems
container_volume E99.D
creator ZHANG, Chao
AKASHI, Takuya
description In this paper, we address the problem of projective template matching which aims to estimate parameters of projective transformation. Although homography can be estimated by combining key-point-based local features and RANSAC, it can hardly be solved with feature-less images or high outlier rate images. Estimating the projective transformation remains a difficult problem due to high-dimensionality and strong non-convexity. Our approach is to quantize the parameters of projective transformation with binary finite field and search for an appropriate solution as the final result over the discrete sampling set. The benefit is that we can avoid searching among a huge amount of potential candidates. Furthermore, in order to approximate the global optimum more efficiently, we develop a level-wise adaptive sampling (LAS) method under genetic algorithm framework. With LAS, the individuals are uniformly selected from each fitness level and the elite solution finally converges to the global optimum. In the experiment, we compare our method against the popular projective solution and systematically analyse our method. The result shows that our method can provide convincing performance and holds wider application scope.
doi_str_mv 10.1587/transinf.2016EDP7038
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1855376513</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1855376513</sourcerecordid><originalsourceid>FETCH-LOGICAL-c570t-a14d08c831f9b5997b7ca0361868d39e895d9221e7353cb346027526e473af8c3</originalsourceid><addsrcrecordid>eNpNkM1OAjEYRRujiYi-gQsSN24G-7XTv6XhR00wEoPrplO-gSHDDLbFxLcXAyKruznn3uQScgu0D0KrhxRcE6um7DMKcjScKsr1GemAykUGXMI56VADMtOCs0tyFeOKUtAMRIfcvbfFNqbeNLQr9Kn6wt4M15vaJey9uuSXVbO4JhelqyPeHLJLPsaj2eA5m7w9vQweJ5kXiqbMQT6n2msOpSmEMapQ3tHdvJZ6zg1qI-aGMUDFBfcFzyVlSjCJueKu1J53yf2-dxPazy3GZNdV9FjXrsF2Gy1oIbiSAvgOzfeoD22MAUu7CdXahW8L1P5-Yv8-sSef7LTpXlvF5BZ4lFxIla_xXxoZY4fWHPKk4oj6pQsWG_4DCnFx2A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1855376513</pqid></control><display><type>article</type><title>Robust Projective Template Matching</title><source>J-STAGE (Japan Science &amp; Technology Information Aggregator, Electronic) Freely Available Titles - Japanese</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>ZHANG, Chao ; AKASHI, Takuya</creator><creatorcontrib>ZHANG, Chao ; AKASHI, Takuya</creatorcontrib><description>In this paper, we address the problem of projective template matching which aims to estimate parameters of projective transformation. Although homography can be estimated by combining key-point-based local features and RANSAC, it can hardly be solved with feature-less images or high outlier rate images. Estimating the projective transformation remains a difficult problem due to high-dimensionality and strong non-convexity. Our approach is to quantize the parameters of projective transformation with binary finite field and search for an appropriate solution as the final result over the discrete sampling set. The benefit is that we can avoid searching among a huge amount of potential candidates. Furthermore, in order to approximate the global optimum more efficiently, we develop a level-wise adaptive sampling (LAS) method under genetic algorithm framework. With LAS, the individuals are uniformly selected from each fitness level and the elite solution finally converges to the global optimum. In the experiment, we compare our method against the popular projective solution and systematically analyse our method. The result shows that our method can provide convincing performance and holds wider application scope.</description><identifier>ISSN: 0916-8532</identifier><identifier>EISSN: 1745-1361</identifier><identifier>DOI: 10.1587/transinf.2016EDP7038</identifier><language>eng</language><publisher>The Institute of Electronics, Information and Communication Engineers</publisher><subject>Approximation ; binary finite field ; homography estimation ; level-wise adaptive sampling ; Optimization ; Parameters ; projective template matching ; Sampling ; Searching ; Template matching ; Transformations</subject><ispartof>IEICE Transactions on Information and Systems, 2016/09/01, Vol.E99.D(9), pp.2341-2350</ispartof><rights>2016 The Institute of Electronics, Information and Communication Engineers</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c570t-a14d08c831f9b5997b7ca0361868d39e895d9221e7353cb346027526e473af8c3</citedby><cites>FETCH-LOGICAL-c570t-a14d08c831f9b5997b7ca0361868d39e895d9221e7353cb346027526e473af8c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,1877,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>ZHANG, Chao</creatorcontrib><creatorcontrib>AKASHI, Takuya</creatorcontrib><title>Robust Projective Template Matching</title><title>IEICE Transactions on Information and Systems</title><addtitle>IEICE Trans. Inf. &amp; Syst.</addtitle><description>In this paper, we address the problem of projective template matching which aims to estimate parameters of projective transformation. Although homography can be estimated by combining key-point-based local features and RANSAC, it can hardly be solved with feature-less images or high outlier rate images. Estimating the projective transformation remains a difficult problem due to high-dimensionality and strong non-convexity. Our approach is to quantize the parameters of projective transformation with binary finite field and search for an appropriate solution as the final result over the discrete sampling set. The benefit is that we can avoid searching among a huge amount of potential candidates. Furthermore, in order to approximate the global optimum more efficiently, we develop a level-wise adaptive sampling (LAS) method under genetic algorithm framework. With LAS, the individuals are uniformly selected from each fitness level and the elite solution finally converges to the global optimum. In the experiment, we compare our method against the popular projective solution and systematically analyse our method. The result shows that our method can provide convincing performance and holds wider application scope.</description><subject>Approximation</subject><subject>binary finite field</subject><subject>homography estimation</subject><subject>level-wise adaptive sampling</subject><subject>Optimization</subject><subject>Parameters</subject><subject>projective template matching</subject><subject>Sampling</subject><subject>Searching</subject><subject>Template matching</subject><subject>Transformations</subject><issn>0916-8532</issn><issn>1745-1361</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNpNkM1OAjEYRRujiYi-gQsSN24G-7XTv6XhR00wEoPrplO-gSHDDLbFxLcXAyKruznn3uQScgu0D0KrhxRcE6um7DMKcjScKsr1GemAykUGXMI56VADMtOCs0tyFeOKUtAMRIfcvbfFNqbeNLQr9Kn6wt4M15vaJey9uuSXVbO4JhelqyPeHLJLPsaj2eA5m7w9vQweJ5kXiqbMQT6n2msOpSmEMapQ3tHdvJZ6zg1qI-aGMUDFBfcFzyVlSjCJueKu1J53yf2-dxPazy3GZNdV9FjXrsF2Gy1oIbiSAvgOzfeoD22MAUu7CdXahW8L1P5-Yv8-sSef7LTpXlvF5BZ4lFxIla_xXxoZY4fWHPKk4oj6pQsWG_4DCnFx2A</recordid><startdate>2016</startdate><enddate>2016</enddate><creator>ZHANG, Chao</creator><creator>AKASHI, Takuya</creator><general>The Institute of Electronics, Information and Communication Engineers</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>2016</creationdate><title>Robust Projective Template Matching</title><author>ZHANG, Chao ; AKASHI, Takuya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c570t-a14d08c831f9b5997b7ca0361868d39e895d9221e7353cb346027526e473af8c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Approximation</topic><topic>binary finite field</topic><topic>homography estimation</topic><topic>level-wise adaptive sampling</topic><topic>Optimization</topic><topic>Parameters</topic><topic>projective template matching</topic><topic>Sampling</topic><topic>Searching</topic><topic>Template matching</topic><topic>Transformations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>ZHANG, Chao</creatorcontrib><creatorcontrib>AKASHI, Takuya</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEICE Transactions on Information and Systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>ZHANG, Chao</au><au>AKASHI, Takuya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust Projective Template Matching</atitle><jtitle>IEICE Transactions on Information and Systems</jtitle><addtitle>IEICE Trans. Inf. &amp; Syst.</addtitle><date>2016</date><risdate>2016</risdate><volume>E99.D</volume><issue>9</issue><spage>2341</spage><epage>2350</epage><pages>2341-2350</pages><issn>0916-8532</issn><eissn>1745-1361</eissn><abstract>In this paper, we address the problem of projective template matching which aims to estimate parameters of projective transformation. Although homography can be estimated by combining key-point-based local features and RANSAC, it can hardly be solved with feature-less images or high outlier rate images. Estimating the projective transformation remains a difficult problem due to high-dimensionality and strong non-convexity. Our approach is to quantize the parameters of projective transformation with binary finite field and search for an appropriate solution as the final result over the discrete sampling set. The benefit is that we can avoid searching among a huge amount of potential candidates. Furthermore, in order to approximate the global optimum more efficiently, we develop a level-wise adaptive sampling (LAS) method under genetic algorithm framework. With LAS, the individuals are uniformly selected from each fitness level and the elite solution finally converges to the global optimum. In the experiment, we compare our method against the popular projective solution and systematically analyse our method. The result shows that our method can provide convincing performance and holds wider application scope.</abstract><pub>The Institute of Electronics, Information and Communication Engineers</pub><doi>10.1587/transinf.2016EDP7038</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0916-8532
ispartof IEICE Transactions on Information and Systems, 2016/09/01, Vol.E99.D(9), pp.2341-2350
issn 0916-8532
1745-1361
language eng
recordid cdi_proquest_miscellaneous_1855376513
source J-STAGE (Japan Science & Technology Information Aggregator, Electronic) Freely Available Titles - Japanese; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Approximation
binary finite field
homography estimation
level-wise adaptive sampling
Optimization
Parameters
projective template matching
Sampling
Searching
Template matching
Transformations
title Robust Projective Template Matching
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T06%3A02%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20Projective%20Template%20Matching&rft.jtitle=IEICE%20Transactions%20on%20Information%20and%20Systems&rft.au=ZHANG,%20Chao&rft.date=2016&rft.volume=E99.D&rft.issue=9&rft.spage=2341&rft.epage=2350&rft.pages=2341-2350&rft.issn=0916-8532&rft.eissn=1745-1361&rft_id=info:doi/10.1587/transinf.2016EDP7038&rft_dat=%3Cproquest_cross%3E1855376513%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1855376513&rft_id=info:pmid/&rfr_iscdi=true