Write Skew and Zipf Distribution: Evidence and Implications

Understanding workload characteristics is essential to storage systems design and performance optimization. With the emergence of flash memory as a new viable storage medium, the new design concern of flash endurance arises, necessitating a revisit of workload characteristics, in particular, of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACM transactions on storage 2016-08, Vol.12 (4), p.1-19
Hauptverfasser: Yang, Yue, Zhu, Jianwen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 19
container_issue 4
container_start_page 1
container_title ACM transactions on storage
container_volume 12
creator Yang, Yue
Zhu, Jianwen
description Understanding workload characteristics is essential to storage systems design and performance optimization. With the emergence of flash memory as a new viable storage medium, the new design concern of flash endurance arises, necessitating a revisit of workload characteristics, in particular, of the write behavior. Inspired by Web caching studies where a Zipf-like access pattern is commonly found, we hypothesize that write count distribution at the block level may also follow Zipf’s Law. To validate this hypothesis, we study 48 block I/O traces collected from a wide variety of real and benchmark applications. Through extensive analysis, we demonstrate that the Zipf-like pattern indeed widely exists in write traffic provided its disguises are removed by statistical processing. This finding implies that write skew in a large class of applications could be analytically expressed and, thus, facilitates design tradeoff explorations adaptive to workload characteristics.
doi_str_mv 10.1145/2908557
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1855375506</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1855375506</sourcerecordid><originalsourceid>FETCH-LOGICAL-c220t-92f45ed5721119815609b076801593dda02114088fe7a4946cf7d4da8aff3bcc3</originalsourceid><addsrcrecordid>eNo9kE1LxDAYhIMouK7iX-hNL9U3H2_THGV1VVjwoCJ4CWk-INpta9Ii_nsru3iagXkYmCHknMIVpQKvmYIaUR6QBUXkJQfFD_-9lMfkJOcPAF4xgQtSvKU4-uL5038XpnPFexxCcRvzmGIzjbHvTslRMG32Z3tdktf13cvqodw83T-ubjalZQzGUrEg0DuUjFKqaooVqAZkVQNFxZ0zMAcC6jp4aYQSlQ3SCWdqEwJvrOVLcrnrHVL_Nfk86m3M1ret6Xw_ZU3nUVwiQjWjFzvUpj7n5IMeUtya9KMp6L8P9P4D_gvatEr7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1855375506</pqid></control><display><type>article</type><title>Write Skew and Zipf Distribution: Evidence and Implications</title><source>ACM Digital Library Complete</source><creator>Yang, Yue ; Zhu, Jianwen</creator><creatorcontrib>Yang, Yue ; Zhu, Jianwen</creatorcontrib><description>Understanding workload characteristics is essential to storage systems design and performance optimization. With the emergence of flash memory as a new viable storage medium, the new design concern of flash endurance arises, necessitating a revisit of workload characteristics, in particular, of the write behavior. Inspired by Web caching studies where a Zipf-like access pattern is commonly found, we hypothesize that write count distribution at the block level may also follow Zipf’s Law. To validate this hypothesis, we study 48 block I/O traces collected from a wide variety of real and benchmark applications. Through extensive analysis, we demonstrate that the Zipf-like pattern indeed widely exists in write traffic provided its disguises are removed by statistical processing. This finding implies that write skew in a large class of applications could be analytically expressed and, thus, facilitates design tradeoff explorations adaptive to workload characteristics.</description><identifier>ISSN: 1553-3077</identifier><identifier>EISSN: 1553-3093</identifier><identifier>DOI: 10.1145/2908557</identifier><language>eng</language><subject>Counting ; Design engineering ; Design optimization ; Endurance ; Mathematical analysis ; Optimization ; Skew distributions ; Workload</subject><ispartof>ACM transactions on storage, 2016-08, Vol.12 (4), p.1-19</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c220t-92f45ed5721119815609b076801593dda02114088fe7a4946cf7d4da8aff3bcc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Yang, Yue</creatorcontrib><creatorcontrib>Zhu, Jianwen</creatorcontrib><title>Write Skew and Zipf Distribution: Evidence and Implications</title><title>ACM transactions on storage</title><description>Understanding workload characteristics is essential to storage systems design and performance optimization. With the emergence of flash memory as a new viable storage medium, the new design concern of flash endurance arises, necessitating a revisit of workload characteristics, in particular, of the write behavior. Inspired by Web caching studies where a Zipf-like access pattern is commonly found, we hypothesize that write count distribution at the block level may also follow Zipf’s Law. To validate this hypothesis, we study 48 block I/O traces collected from a wide variety of real and benchmark applications. Through extensive analysis, we demonstrate that the Zipf-like pattern indeed widely exists in write traffic provided its disguises are removed by statistical processing. This finding implies that write skew in a large class of applications could be analytically expressed and, thus, facilitates design tradeoff explorations adaptive to workload characteristics.</description><subject>Counting</subject><subject>Design engineering</subject><subject>Design optimization</subject><subject>Endurance</subject><subject>Mathematical analysis</subject><subject>Optimization</subject><subject>Skew distributions</subject><subject>Workload</subject><issn>1553-3077</issn><issn>1553-3093</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LxDAYhIMouK7iX-hNL9U3H2_THGV1VVjwoCJ4CWk-INpta9Ii_nsru3iagXkYmCHknMIVpQKvmYIaUR6QBUXkJQfFD_-9lMfkJOcPAF4xgQtSvKU4-uL5038XpnPFexxCcRvzmGIzjbHvTslRMG32Z3tdktf13cvqodw83T-ubjalZQzGUrEg0DuUjFKqaooVqAZkVQNFxZ0zMAcC6jp4aYQSlQ3SCWdqEwJvrOVLcrnrHVL_Nfk86m3M1ret6Xw_ZU3nUVwiQjWjFzvUpj7n5IMeUtya9KMp6L8P9P4D_gvatEr7</recordid><startdate>20160801</startdate><enddate>20160801</enddate><creator>Yang, Yue</creator><creator>Zhu, Jianwen</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20160801</creationdate><title>Write Skew and Zipf Distribution</title><author>Yang, Yue ; Zhu, Jianwen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c220t-92f45ed5721119815609b076801593dda02114088fe7a4946cf7d4da8aff3bcc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Counting</topic><topic>Design engineering</topic><topic>Design optimization</topic><topic>Endurance</topic><topic>Mathematical analysis</topic><topic>Optimization</topic><topic>Skew distributions</topic><topic>Workload</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Yue</creatorcontrib><creatorcontrib>Zhu, Jianwen</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>ACM transactions on storage</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Yue</au><au>Zhu, Jianwen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Write Skew and Zipf Distribution: Evidence and Implications</atitle><jtitle>ACM transactions on storage</jtitle><date>2016-08-01</date><risdate>2016</risdate><volume>12</volume><issue>4</issue><spage>1</spage><epage>19</epage><pages>1-19</pages><issn>1553-3077</issn><eissn>1553-3093</eissn><abstract>Understanding workload characteristics is essential to storage systems design and performance optimization. With the emergence of flash memory as a new viable storage medium, the new design concern of flash endurance arises, necessitating a revisit of workload characteristics, in particular, of the write behavior. Inspired by Web caching studies where a Zipf-like access pattern is commonly found, we hypothesize that write count distribution at the block level may also follow Zipf’s Law. To validate this hypothesis, we study 48 block I/O traces collected from a wide variety of real and benchmark applications. Through extensive analysis, we demonstrate that the Zipf-like pattern indeed widely exists in write traffic provided its disguises are removed by statistical processing. This finding implies that write skew in a large class of applications could be analytically expressed and, thus, facilitates design tradeoff explorations adaptive to workload characteristics.</abstract><doi>10.1145/2908557</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1553-3077
ispartof ACM transactions on storage, 2016-08, Vol.12 (4), p.1-19
issn 1553-3077
1553-3093
language eng
recordid cdi_proquest_miscellaneous_1855375506
source ACM Digital Library Complete
subjects Counting
Design engineering
Design optimization
Endurance
Mathematical analysis
Optimization
Skew distributions
Workload
title Write Skew and Zipf Distribution: Evidence and Implications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T16%3A29%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Write%20Skew%20and%20Zipf%20Distribution:%20Evidence%20and%20Implications&rft.jtitle=ACM%20transactions%20on%20storage&rft.au=Yang,%20Yue&rft.date=2016-08-01&rft.volume=12&rft.issue=4&rft.spage=1&rft.epage=19&rft.pages=1-19&rft.issn=1553-3077&rft.eissn=1553-3093&rft_id=info:doi/10.1145/2908557&rft_dat=%3Cproquest_cross%3E1855375506%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1855375506&rft_id=info:pmid/&rfr_iscdi=true