Functional regression approximate Bayesian computation for Gaussian process density estimation

A novel Bayesian nonparametric method is proposed for hierarchical modelling on a set of related density functions, where grouped data in the form of samples from each density function are available. Borrowing strength across the groups is a major challenge in this context. To address this problem,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational statistics & data analysis 2016-11, Vol.103, p.229-241
Hauptverfasser: Rodrigues, G.S., Nott, David J., Sisson, S.A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A novel Bayesian nonparametric method is proposed for hierarchical modelling on a set of related density functions, where grouped data in the form of samples from each density function are available. Borrowing strength across the groups is a major challenge in this context. To address this problem, a hierarchically structured prior, defined over a set of univariate density functions using convenient transformations of Gaussian processes, is introduced. Inference is performed through approximate Bayesian computation (ABC) via a novel functional regression adjustment. The performance of the proposed method is illustrated via simulation studies and an analysis of rural high school exam performance in Brazil.
ISSN:0167-9473
1872-7352
DOI:10.1016/j.csda.2016.05.009