Colloidal Mechanisms of Gold Nanoparticle Loss in Asymmetric Flow Field-Flow Fractionation

Flow field-flow fractionation is a powerful method for the analysis of nanoparticle size distributions, but its widespread use has been hampered by large analyte losses, especially of metal nanoparticles. Here, we report on the colloidal mechanisms underlying the losses. We systematically studied go...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2016-10, Vol.88 (20), p.10065-10073
Hauptverfasser: Jochem, Aljosha-Rakim, Ankah, Genesis Ngwa, Meyer, Lars-Arne, Elsenberg, Stephan, Johann, Christoph, Kraus, Tobias
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10073
container_issue 20
container_start_page 10065
container_title Analytical chemistry (Washington)
container_volume 88
creator Jochem, Aljosha-Rakim
Ankah, Genesis Ngwa
Meyer, Lars-Arne
Elsenberg, Stephan
Johann, Christoph
Kraus, Tobias
description Flow field-flow fractionation is a powerful method for the analysis of nanoparticle size distributions, but its widespread use has been hampered by large analyte losses, especially of metal nanoparticles. Here, we report on the colloidal mechanisms underlying the losses. We systematically studied gold nanoparticles (AuNPs) during asymmetrical flow field-flow fractionation (AF4) by systematic variation of the particle properties and the eluent composition. Recoveries of AuNPs (core diameter 12 nm) stabilized by citrate or polyethylene glycol (PEG) at different ionic strengths were determined. We used online UV–vis detection and off-line elementary analysis to follow particle losses during full analysis runs, runs without cross-flow, and runs with parts of the instrument bypassed. The combination allowed us to calculate relative and absolute analyte losses at different stages of the analytic protocol. We found different loss mechanisms depending on the ligand. Citrate-stabilized particles degraded during analysis and suffered large losses (up to 74%). PEG-stabilized particles had smaller relative losses at moderate ionic strengths (1–20%) that depended on PEG length. Long PEGs at higher ionic strengths (≥5 mM) caused particle loss due to bridging adsorption at the membrane. Bulk agglomeration was not a relevant loss mechanism at low ionic strengths ≤5 mM for any of the studied particles. An unexpectedly large fraction of particles was lost at tubing and other internal surfaces. We propose that the colloidal mechanisms observed here are relevant loss mechanisms in many particle analysis protocols and discuss strategies to avoid them.
doi_str_mv 10.1021/acs.analchem.6b02397
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1855372322</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1835394106</sourcerecordid><originalsourceid>FETCH-LOGICAL-a446t-45715dd3b9ca83eb19c29adbdf704eb80c051f08cd2ac7e96edd7f2e8159b473</originalsourceid><addsrcrecordid>eNqNkc1KAzEURoMoWqtvIBJw42bqzc9MJkspVoWqm67cDJkkg5HMpCZTpG_v1FYFF-ImN4vzfRfuQeiMwIQAJVdKp4nqlNcvtp0UNVAmxR4akZxCVpQl3UcjAGAZFQBH6DilVwBCgBSH6IiKQjDB6Qg9T4P3wRnl8YPVL6pzqU04NPg2eIMfVReWKvZOe4vnISXsOnyd1m1r--g0nvnwjmfOepNtv1Hp3oVObZ4TdNAon-zpbo7RYnazmN5l86fb--n1PFOcF33Gc0FyY1gttSqZrYnUVCpTm0YAt3UJGnLSQKkNVVpYWVhjRENtSXJZc8HG6HJbu4zhbWVTX7Uuaeu96mxYpYqUec4EZZT-A2U5k5xAMaAXv9DXsIrDuT8pKjmUUg4U31I6DseJtqmW0bUqrisC1cZSNViqvixVO0tD7HxXvqpba75DX1oGALbAJv6z-K_ODzZOoPY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1832940899</pqid></control><display><type>article</type><title>Colloidal Mechanisms of Gold Nanoparticle Loss in Asymmetric Flow Field-Flow Fractionation</title><source>American Chemical Society Journals</source><creator>Jochem, Aljosha-Rakim ; Ankah, Genesis Ngwa ; Meyer, Lars-Arne ; Elsenberg, Stephan ; Johann, Christoph ; Kraus, Tobias</creator><creatorcontrib>Jochem, Aljosha-Rakim ; Ankah, Genesis Ngwa ; Meyer, Lars-Arne ; Elsenberg, Stephan ; Johann, Christoph ; Kraus, Tobias</creatorcontrib><description>Flow field-flow fractionation is a powerful method for the analysis of nanoparticle size distributions, but its widespread use has been hampered by large analyte losses, especially of metal nanoparticles. Here, we report on the colloidal mechanisms underlying the losses. We systematically studied gold nanoparticles (AuNPs) during asymmetrical flow field-flow fractionation (AF4) by systematic variation of the particle properties and the eluent composition. Recoveries of AuNPs (core diameter 12 nm) stabilized by citrate or polyethylene glycol (PEG) at different ionic strengths were determined. We used online UV–vis detection and off-line elementary analysis to follow particle losses during full analysis runs, runs without cross-flow, and runs with parts of the instrument bypassed. The combination allowed us to calculate relative and absolute analyte losses at different stages of the analytic protocol. We found different loss mechanisms depending on the ligand. Citrate-stabilized particles degraded during analysis and suffered large losses (up to 74%). PEG-stabilized particles had smaller relative losses at moderate ionic strengths (1–20%) that depended on PEG length. Long PEGs at higher ionic strengths (≥5 mM) caused particle loss due to bridging adsorption at the membrane. Bulk agglomeration was not a relevant loss mechanism at low ionic strengths ≤5 mM for any of the studied particles. An unexpectedly large fraction of particles was lost at tubing and other internal surfaces. We propose that the colloidal mechanisms observed here are relevant loss mechanisms in many particle analysis protocols and discuss strategies to avoid them.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.6b02397</identifier><identifier>PMID: 27673742</identifier><identifier>CODEN: ANCHAM</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Adsorption ; Analytical chemistry ; Colloids ; Fractionation ; Gold ; Nanoparticles ; Nanostructure ; Particle physics ; Polyethylene glycol ; Strength ; Ultraviolet radiation</subject><ispartof>Analytical chemistry (Washington), 2016-10, Vol.88 (20), p.10065-10073</ispartof><rights>Copyright © 2016 American Chemical Society</rights><rights>Copyright American Chemical Society Oct 18, 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a446t-45715dd3b9ca83eb19c29adbdf704eb80c051f08cd2ac7e96edd7f2e8159b473</citedby><cites>FETCH-LOGICAL-a446t-45715dd3b9ca83eb19c29adbdf704eb80c051f08cd2ac7e96edd7f2e8159b473</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.analchem.6b02397$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.analchem.6b02397$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27673742$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jochem, Aljosha-Rakim</creatorcontrib><creatorcontrib>Ankah, Genesis Ngwa</creatorcontrib><creatorcontrib>Meyer, Lars-Arne</creatorcontrib><creatorcontrib>Elsenberg, Stephan</creatorcontrib><creatorcontrib>Johann, Christoph</creatorcontrib><creatorcontrib>Kraus, Tobias</creatorcontrib><title>Colloidal Mechanisms of Gold Nanoparticle Loss in Asymmetric Flow Field-Flow Fractionation</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>Flow field-flow fractionation is a powerful method for the analysis of nanoparticle size distributions, but its widespread use has been hampered by large analyte losses, especially of metal nanoparticles. Here, we report on the colloidal mechanisms underlying the losses. We systematically studied gold nanoparticles (AuNPs) during asymmetrical flow field-flow fractionation (AF4) by systematic variation of the particle properties and the eluent composition. Recoveries of AuNPs (core diameter 12 nm) stabilized by citrate or polyethylene glycol (PEG) at different ionic strengths were determined. We used online UV–vis detection and off-line elementary analysis to follow particle losses during full analysis runs, runs without cross-flow, and runs with parts of the instrument bypassed. The combination allowed us to calculate relative and absolute analyte losses at different stages of the analytic protocol. We found different loss mechanisms depending on the ligand. Citrate-stabilized particles degraded during analysis and suffered large losses (up to 74%). PEG-stabilized particles had smaller relative losses at moderate ionic strengths (1–20%) that depended on PEG length. Long PEGs at higher ionic strengths (≥5 mM) caused particle loss due to bridging adsorption at the membrane. Bulk agglomeration was not a relevant loss mechanism at low ionic strengths ≤5 mM for any of the studied particles. An unexpectedly large fraction of particles was lost at tubing and other internal surfaces. We propose that the colloidal mechanisms observed here are relevant loss mechanisms in many particle analysis protocols and discuss strategies to avoid them.</description><subject>Adsorption</subject><subject>Analytical chemistry</subject><subject>Colloids</subject><subject>Fractionation</subject><subject>Gold</subject><subject>Nanoparticles</subject><subject>Nanostructure</subject><subject>Particle physics</subject><subject>Polyethylene glycol</subject><subject>Strength</subject><subject>Ultraviolet radiation</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNkc1KAzEURoMoWqtvIBJw42bqzc9MJkspVoWqm67cDJkkg5HMpCZTpG_v1FYFF-ImN4vzfRfuQeiMwIQAJVdKp4nqlNcvtp0UNVAmxR4akZxCVpQl3UcjAGAZFQBH6DilVwBCgBSH6IiKQjDB6Qg9T4P3wRnl8YPVL6pzqU04NPg2eIMfVReWKvZOe4vnISXsOnyd1m1r--g0nvnwjmfOepNtv1Hp3oVObZ4TdNAon-zpbo7RYnazmN5l86fb--n1PFOcF33Gc0FyY1gttSqZrYnUVCpTm0YAt3UJGnLSQKkNVVpYWVhjRENtSXJZc8HG6HJbu4zhbWVTX7Uuaeu96mxYpYqUec4EZZT-A2U5k5xAMaAXv9DXsIrDuT8pKjmUUg4U31I6DseJtqmW0bUqrisC1cZSNViqvixVO0tD7HxXvqpba75DX1oGALbAJv6z-K_ODzZOoPY</recordid><startdate>20161018</startdate><enddate>20161018</enddate><creator>Jochem, Aljosha-Rakim</creator><creator>Ankah, Genesis Ngwa</creator><creator>Meyer, Lars-Arne</creator><creator>Elsenberg, Stephan</creator><creator>Johann, Christoph</creator><creator>Kraus, Tobias</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20161018</creationdate><title>Colloidal Mechanisms of Gold Nanoparticle Loss in Asymmetric Flow Field-Flow Fractionation</title><author>Jochem, Aljosha-Rakim ; Ankah, Genesis Ngwa ; Meyer, Lars-Arne ; Elsenberg, Stephan ; Johann, Christoph ; Kraus, Tobias</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a446t-45715dd3b9ca83eb19c29adbdf704eb80c051f08cd2ac7e96edd7f2e8159b473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Adsorption</topic><topic>Analytical chemistry</topic><topic>Colloids</topic><topic>Fractionation</topic><topic>Gold</topic><topic>Nanoparticles</topic><topic>Nanostructure</topic><topic>Particle physics</topic><topic>Polyethylene glycol</topic><topic>Strength</topic><topic>Ultraviolet radiation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jochem, Aljosha-Rakim</creatorcontrib><creatorcontrib>Ankah, Genesis Ngwa</creatorcontrib><creatorcontrib>Meyer, Lars-Arne</creatorcontrib><creatorcontrib>Elsenberg, Stephan</creatorcontrib><creatorcontrib>Johann, Christoph</creatorcontrib><creatorcontrib>Kraus, Tobias</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jochem, Aljosha-Rakim</au><au>Ankah, Genesis Ngwa</au><au>Meyer, Lars-Arne</au><au>Elsenberg, Stephan</au><au>Johann, Christoph</au><au>Kraus, Tobias</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Colloidal Mechanisms of Gold Nanoparticle Loss in Asymmetric Flow Field-Flow Fractionation</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2016-10-18</date><risdate>2016</risdate><volume>88</volume><issue>20</issue><spage>10065</spage><epage>10073</epage><pages>10065-10073</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><coden>ANCHAM</coden><abstract>Flow field-flow fractionation is a powerful method for the analysis of nanoparticle size distributions, but its widespread use has been hampered by large analyte losses, especially of metal nanoparticles. Here, we report on the colloidal mechanisms underlying the losses. We systematically studied gold nanoparticles (AuNPs) during asymmetrical flow field-flow fractionation (AF4) by systematic variation of the particle properties and the eluent composition. Recoveries of AuNPs (core diameter 12 nm) stabilized by citrate or polyethylene glycol (PEG) at different ionic strengths were determined. We used online UV–vis detection and off-line elementary analysis to follow particle losses during full analysis runs, runs without cross-flow, and runs with parts of the instrument bypassed. The combination allowed us to calculate relative and absolute analyte losses at different stages of the analytic protocol. We found different loss mechanisms depending on the ligand. Citrate-stabilized particles degraded during analysis and suffered large losses (up to 74%). PEG-stabilized particles had smaller relative losses at moderate ionic strengths (1–20%) that depended on PEG length. Long PEGs at higher ionic strengths (≥5 mM) caused particle loss due to bridging adsorption at the membrane. Bulk agglomeration was not a relevant loss mechanism at low ionic strengths ≤5 mM for any of the studied particles. An unexpectedly large fraction of particles was lost at tubing and other internal surfaces. We propose that the colloidal mechanisms observed here are relevant loss mechanisms in many particle analysis protocols and discuss strategies to avoid them.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>27673742</pmid><doi>10.1021/acs.analchem.6b02397</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-2700
ispartof Analytical chemistry (Washington), 2016-10, Vol.88 (20), p.10065-10073
issn 0003-2700
1520-6882
language eng
recordid cdi_proquest_miscellaneous_1855372322
source American Chemical Society Journals
subjects Adsorption
Analytical chemistry
Colloids
Fractionation
Gold
Nanoparticles
Nanostructure
Particle physics
Polyethylene glycol
Strength
Ultraviolet radiation
title Colloidal Mechanisms of Gold Nanoparticle Loss in Asymmetric Flow Field-Flow Fractionation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T01%3A00%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Colloidal%20Mechanisms%20of%20Gold%20Nanoparticle%20Loss%20in%20Asymmetric%20Flow%20Field-Flow%20Fractionation&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Jochem,%20Aljosha-Rakim&rft.date=2016-10-18&rft.volume=88&rft.issue=20&rft.spage=10065&rft.epage=10073&rft.pages=10065-10073&rft.issn=0003-2700&rft.eissn=1520-6882&rft.coden=ANCHAM&rft_id=info:doi/10.1021/acs.analchem.6b02397&rft_dat=%3Cproquest_cross%3E1835394106%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1832940899&rft_id=info:pmid/27673742&rfr_iscdi=true