Colloidal Mechanisms of Gold Nanoparticle Loss in Asymmetric Flow Field-Flow Fractionation
Flow field-flow fractionation is a powerful method for the analysis of nanoparticle size distributions, but its widespread use has been hampered by large analyte losses, especially of metal nanoparticles. Here, we report on the colloidal mechanisms underlying the losses. We systematically studied go...
Gespeichert in:
Veröffentlicht in: | Analytical chemistry (Washington) 2016-10, Vol.88 (20), p.10065-10073 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10073 |
---|---|
container_issue | 20 |
container_start_page | 10065 |
container_title | Analytical chemistry (Washington) |
container_volume | 88 |
creator | Jochem, Aljosha-Rakim Ankah, Genesis Ngwa Meyer, Lars-Arne Elsenberg, Stephan Johann, Christoph Kraus, Tobias |
description | Flow field-flow fractionation is a powerful method for the analysis of nanoparticle size distributions, but its widespread use has been hampered by large analyte losses, especially of metal nanoparticles. Here, we report on the colloidal mechanisms underlying the losses. We systematically studied gold nanoparticles (AuNPs) during asymmetrical flow field-flow fractionation (AF4) by systematic variation of the particle properties and the eluent composition. Recoveries of AuNPs (core diameter 12 nm) stabilized by citrate or polyethylene glycol (PEG) at different ionic strengths were determined. We used online UV–vis detection and off-line elementary analysis to follow particle losses during full analysis runs, runs without cross-flow, and runs with parts of the instrument bypassed. The combination allowed us to calculate relative and absolute analyte losses at different stages of the analytic protocol. We found different loss mechanisms depending on the ligand. Citrate-stabilized particles degraded during analysis and suffered large losses (up to 74%). PEG-stabilized particles had smaller relative losses at moderate ionic strengths (1–20%) that depended on PEG length. Long PEGs at higher ionic strengths (≥5 mM) caused particle loss due to bridging adsorption at the membrane. Bulk agglomeration was not a relevant loss mechanism at low ionic strengths ≤5 mM for any of the studied particles. An unexpectedly large fraction of particles was lost at tubing and other internal surfaces. We propose that the colloidal mechanisms observed here are relevant loss mechanisms in many particle analysis protocols and discuss strategies to avoid them. |
doi_str_mv | 10.1021/acs.analchem.6b02397 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1855372322</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1835394106</sourcerecordid><originalsourceid>FETCH-LOGICAL-a446t-45715dd3b9ca83eb19c29adbdf704eb80c051f08cd2ac7e96edd7f2e8159b473</originalsourceid><addsrcrecordid>eNqNkc1KAzEURoMoWqtvIBJw42bqzc9MJkspVoWqm67cDJkkg5HMpCZTpG_v1FYFF-ImN4vzfRfuQeiMwIQAJVdKp4nqlNcvtp0UNVAmxR4akZxCVpQl3UcjAGAZFQBH6DilVwBCgBSH6IiKQjDB6Qg9T4P3wRnl8YPVL6pzqU04NPg2eIMfVReWKvZOe4vnISXsOnyd1m1r--g0nvnwjmfOepNtv1Hp3oVObZ4TdNAon-zpbo7RYnazmN5l86fb--n1PFOcF33Gc0FyY1gttSqZrYnUVCpTm0YAt3UJGnLSQKkNVVpYWVhjRENtSXJZc8HG6HJbu4zhbWVTX7Uuaeu96mxYpYqUec4EZZT-A2U5k5xAMaAXv9DXsIrDuT8pKjmUUg4U31I6DseJtqmW0bUqrisC1cZSNViqvixVO0tD7HxXvqpba75DX1oGALbAJv6z-K_ODzZOoPY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1832940899</pqid></control><display><type>article</type><title>Colloidal Mechanisms of Gold Nanoparticle Loss in Asymmetric Flow Field-Flow Fractionation</title><source>American Chemical Society Journals</source><creator>Jochem, Aljosha-Rakim ; Ankah, Genesis Ngwa ; Meyer, Lars-Arne ; Elsenberg, Stephan ; Johann, Christoph ; Kraus, Tobias</creator><creatorcontrib>Jochem, Aljosha-Rakim ; Ankah, Genesis Ngwa ; Meyer, Lars-Arne ; Elsenberg, Stephan ; Johann, Christoph ; Kraus, Tobias</creatorcontrib><description>Flow field-flow fractionation is a powerful method for the analysis of nanoparticle size distributions, but its widespread use has been hampered by large analyte losses, especially of metal nanoparticles. Here, we report on the colloidal mechanisms underlying the losses. We systematically studied gold nanoparticles (AuNPs) during asymmetrical flow field-flow fractionation (AF4) by systematic variation of the particle properties and the eluent composition. Recoveries of AuNPs (core diameter 12 nm) stabilized by citrate or polyethylene glycol (PEG) at different ionic strengths were determined. We used online UV–vis detection and off-line elementary analysis to follow particle losses during full analysis runs, runs without cross-flow, and runs with parts of the instrument bypassed. The combination allowed us to calculate relative and absolute analyte losses at different stages of the analytic protocol. We found different loss mechanisms depending on the ligand. Citrate-stabilized particles degraded during analysis and suffered large losses (up to 74%). PEG-stabilized particles had smaller relative losses at moderate ionic strengths (1–20%) that depended on PEG length. Long PEGs at higher ionic strengths (≥5 mM) caused particle loss due to bridging adsorption at the membrane. Bulk agglomeration was not a relevant loss mechanism at low ionic strengths ≤5 mM for any of the studied particles. An unexpectedly large fraction of particles was lost at tubing and other internal surfaces. We propose that the colloidal mechanisms observed here are relevant loss mechanisms in many particle analysis protocols and discuss strategies to avoid them.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.6b02397</identifier><identifier>PMID: 27673742</identifier><identifier>CODEN: ANCHAM</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Adsorption ; Analytical chemistry ; Colloids ; Fractionation ; Gold ; Nanoparticles ; Nanostructure ; Particle physics ; Polyethylene glycol ; Strength ; Ultraviolet radiation</subject><ispartof>Analytical chemistry (Washington), 2016-10, Vol.88 (20), p.10065-10073</ispartof><rights>Copyright © 2016 American Chemical Society</rights><rights>Copyright American Chemical Society Oct 18, 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a446t-45715dd3b9ca83eb19c29adbdf704eb80c051f08cd2ac7e96edd7f2e8159b473</citedby><cites>FETCH-LOGICAL-a446t-45715dd3b9ca83eb19c29adbdf704eb80c051f08cd2ac7e96edd7f2e8159b473</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.analchem.6b02397$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.analchem.6b02397$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27673742$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jochem, Aljosha-Rakim</creatorcontrib><creatorcontrib>Ankah, Genesis Ngwa</creatorcontrib><creatorcontrib>Meyer, Lars-Arne</creatorcontrib><creatorcontrib>Elsenberg, Stephan</creatorcontrib><creatorcontrib>Johann, Christoph</creatorcontrib><creatorcontrib>Kraus, Tobias</creatorcontrib><title>Colloidal Mechanisms of Gold Nanoparticle Loss in Asymmetric Flow Field-Flow Fractionation</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>Flow field-flow fractionation is a powerful method for the analysis of nanoparticle size distributions, but its widespread use has been hampered by large analyte losses, especially of metal nanoparticles. Here, we report on the colloidal mechanisms underlying the losses. We systematically studied gold nanoparticles (AuNPs) during asymmetrical flow field-flow fractionation (AF4) by systematic variation of the particle properties and the eluent composition. Recoveries of AuNPs (core diameter 12 nm) stabilized by citrate or polyethylene glycol (PEG) at different ionic strengths were determined. We used online UV–vis detection and off-line elementary analysis to follow particle losses during full analysis runs, runs without cross-flow, and runs with parts of the instrument bypassed. The combination allowed us to calculate relative and absolute analyte losses at different stages of the analytic protocol. We found different loss mechanisms depending on the ligand. Citrate-stabilized particles degraded during analysis and suffered large losses (up to 74%). PEG-stabilized particles had smaller relative losses at moderate ionic strengths (1–20%) that depended on PEG length. Long PEGs at higher ionic strengths (≥5 mM) caused particle loss due to bridging adsorption at the membrane. Bulk agglomeration was not a relevant loss mechanism at low ionic strengths ≤5 mM for any of the studied particles. An unexpectedly large fraction of particles was lost at tubing and other internal surfaces. We propose that the colloidal mechanisms observed here are relevant loss mechanisms in many particle analysis protocols and discuss strategies to avoid them.</description><subject>Adsorption</subject><subject>Analytical chemistry</subject><subject>Colloids</subject><subject>Fractionation</subject><subject>Gold</subject><subject>Nanoparticles</subject><subject>Nanostructure</subject><subject>Particle physics</subject><subject>Polyethylene glycol</subject><subject>Strength</subject><subject>Ultraviolet radiation</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNkc1KAzEURoMoWqtvIBJw42bqzc9MJkspVoWqm67cDJkkg5HMpCZTpG_v1FYFF-ImN4vzfRfuQeiMwIQAJVdKp4nqlNcvtp0UNVAmxR4akZxCVpQl3UcjAGAZFQBH6DilVwBCgBSH6IiKQjDB6Qg9T4P3wRnl8YPVL6pzqU04NPg2eIMfVReWKvZOe4vnISXsOnyd1m1r--g0nvnwjmfOepNtv1Hp3oVObZ4TdNAon-zpbo7RYnazmN5l86fb--n1PFOcF33Gc0FyY1gttSqZrYnUVCpTm0YAt3UJGnLSQKkNVVpYWVhjRENtSXJZc8HG6HJbu4zhbWVTX7Uuaeu96mxYpYqUec4EZZT-A2U5k5xAMaAXv9DXsIrDuT8pKjmUUg4U31I6DseJtqmW0bUqrisC1cZSNViqvixVO0tD7HxXvqpba75DX1oGALbAJv6z-K_ODzZOoPY</recordid><startdate>20161018</startdate><enddate>20161018</enddate><creator>Jochem, Aljosha-Rakim</creator><creator>Ankah, Genesis Ngwa</creator><creator>Meyer, Lars-Arne</creator><creator>Elsenberg, Stephan</creator><creator>Johann, Christoph</creator><creator>Kraus, Tobias</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20161018</creationdate><title>Colloidal Mechanisms of Gold Nanoparticle Loss in Asymmetric Flow Field-Flow Fractionation</title><author>Jochem, Aljosha-Rakim ; Ankah, Genesis Ngwa ; Meyer, Lars-Arne ; Elsenberg, Stephan ; Johann, Christoph ; Kraus, Tobias</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a446t-45715dd3b9ca83eb19c29adbdf704eb80c051f08cd2ac7e96edd7f2e8159b473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Adsorption</topic><topic>Analytical chemistry</topic><topic>Colloids</topic><topic>Fractionation</topic><topic>Gold</topic><topic>Nanoparticles</topic><topic>Nanostructure</topic><topic>Particle physics</topic><topic>Polyethylene glycol</topic><topic>Strength</topic><topic>Ultraviolet radiation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jochem, Aljosha-Rakim</creatorcontrib><creatorcontrib>Ankah, Genesis Ngwa</creatorcontrib><creatorcontrib>Meyer, Lars-Arne</creatorcontrib><creatorcontrib>Elsenberg, Stephan</creatorcontrib><creatorcontrib>Johann, Christoph</creatorcontrib><creatorcontrib>Kraus, Tobias</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jochem, Aljosha-Rakim</au><au>Ankah, Genesis Ngwa</au><au>Meyer, Lars-Arne</au><au>Elsenberg, Stephan</au><au>Johann, Christoph</au><au>Kraus, Tobias</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Colloidal Mechanisms of Gold Nanoparticle Loss in Asymmetric Flow Field-Flow Fractionation</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2016-10-18</date><risdate>2016</risdate><volume>88</volume><issue>20</issue><spage>10065</spage><epage>10073</epage><pages>10065-10073</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><coden>ANCHAM</coden><abstract>Flow field-flow fractionation is a powerful method for the analysis of nanoparticle size distributions, but its widespread use has been hampered by large analyte losses, especially of metal nanoparticles. Here, we report on the colloidal mechanisms underlying the losses. We systematically studied gold nanoparticles (AuNPs) during asymmetrical flow field-flow fractionation (AF4) by systematic variation of the particle properties and the eluent composition. Recoveries of AuNPs (core diameter 12 nm) stabilized by citrate or polyethylene glycol (PEG) at different ionic strengths were determined. We used online UV–vis detection and off-line elementary analysis to follow particle losses during full analysis runs, runs without cross-flow, and runs with parts of the instrument bypassed. The combination allowed us to calculate relative and absolute analyte losses at different stages of the analytic protocol. We found different loss mechanisms depending on the ligand. Citrate-stabilized particles degraded during analysis and suffered large losses (up to 74%). PEG-stabilized particles had smaller relative losses at moderate ionic strengths (1–20%) that depended on PEG length. Long PEGs at higher ionic strengths (≥5 mM) caused particle loss due to bridging adsorption at the membrane. Bulk agglomeration was not a relevant loss mechanism at low ionic strengths ≤5 mM for any of the studied particles. An unexpectedly large fraction of particles was lost at tubing and other internal surfaces. We propose that the colloidal mechanisms observed here are relevant loss mechanisms in many particle analysis protocols and discuss strategies to avoid them.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>27673742</pmid><doi>10.1021/acs.analchem.6b02397</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-2700 |
ispartof | Analytical chemistry (Washington), 2016-10, Vol.88 (20), p.10065-10073 |
issn | 0003-2700 1520-6882 |
language | eng |
recordid | cdi_proquest_miscellaneous_1855372322 |
source | American Chemical Society Journals |
subjects | Adsorption Analytical chemistry Colloids Fractionation Gold Nanoparticles Nanostructure Particle physics Polyethylene glycol Strength Ultraviolet radiation |
title | Colloidal Mechanisms of Gold Nanoparticle Loss in Asymmetric Flow Field-Flow Fractionation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T01%3A00%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Colloidal%20Mechanisms%20of%20Gold%20Nanoparticle%20Loss%20in%20Asymmetric%20Flow%20Field-Flow%20Fractionation&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Jochem,%20Aljosha-Rakim&rft.date=2016-10-18&rft.volume=88&rft.issue=20&rft.spage=10065&rft.epage=10073&rft.pages=10065-10073&rft.issn=0003-2700&rft.eissn=1520-6882&rft.coden=ANCHAM&rft_id=info:doi/10.1021/acs.analchem.6b02397&rft_dat=%3Cproquest_cross%3E1835394106%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1832940899&rft_id=info:pmid/27673742&rfr_iscdi=true |