A new algorithm for solving dynamic equations on a time scale
In this paper, we propose a numerical algorithm to solve a class of dynamic time scale equation which is called the q-difference equation. First, we apply the method for solving initial value problems (IVPs) which contain the first and second order delta derivatives. Illustrative examples show the u...
Gespeichert in:
Veröffentlicht in: | Journal of computational and applied mathematics 2017-03, Vol.312, p.167-173 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 173 |
---|---|
container_issue | |
container_start_page | 167 |
container_title | Journal of computational and applied mathematics |
container_volume | 312 |
creator | Jafari, H. Haghbin, A. Johnston, S.J. Baleanu, D. |
description | In this paper, we propose a numerical algorithm to solve a class of dynamic time scale equation which is called the q-difference equation. First, we apply the method for solving initial value problems (IVPs) which contain the first and second order delta derivatives. Illustrative examples show the usefulness of the method. Then we present applications of the method for solving the strongly non-linear damped q-difference equation. The results show that our method is more accurate than the other existing method. |
doi_str_mv | 10.1016/j.cam.2016.02.047 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1855371125</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0377042716301030</els_id><sourcerecordid>1855371125</sourcerecordid><originalsourceid>FETCH-LOGICAL-c330t-f2199391f53bb075cf4570a537acca3bb5b28de5249f346e1920997e74c3a9153</originalsourceid><addsrcrecordid>eNp9kMtqwzAQRUVpoenjA7rTshu7Gj0ii9JFCH1BoJt2LRR5nCrYViI5Kfn7OqTrrmYY7rkwh5A7YCUwmD6sS--6ko9ryXjJpD4jE6i0KUDr6pxMmNC6YJLrS3KV85oxNjUgJ-RpRnv8oa5dxRSG7442MdEc233oV7Q-9K4LnuJ254YQ-0xjTx0dQoc0e9fiDbloXJvx9m9ek6-X58_5W7H4eH2fzxaFF4INRcPBGGGgUWK5ZFr5RirNnBLaee_Gm1ryqkbFpWmEnCIYzozRqKUXzoAS1-T-1LtJcbvDPNguZI9t63qMu2yhUmMZAD9G4RT1KeacsLGbFDqXDhaYPaqyazuqskdVlnE7qhqZxxOD4w_7gMlmH7D3WIeEfrB1DP_Qv7rVb8M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1855371125</pqid></control><display><type>article</type><title>A new algorithm for solving dynamic equations on a time scale</title><source>Access via ScienceDirect (Elsevier)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Jafari, H. ; Haghbin, A. ; Johnston, S.J. ; Baleanu, D.</creator><creatorcontrib>Jafari, H. ; Haghbin, A. ; Johnston, S.J. ; Baleanu, D.</creatorcontrib><description>In this paper, we propose a numerical algorithm to solve a class of dynamic time scale equation which is called the q-difference equation. First, we apply the method for solving initial value problems (IVPs) which contain the first and second order delta derivatives. Illustrative examples show the usefulness of the method. Then we present applications of the method for solving the strongly non-linear damped q-difference equation. The results show that our method is more accurate than the other existing method.</description><identifier>ISSN: 0377-0427</identifier><identifier>EISSN: 1879-1778</identifier><identifier>DOI: 10.1016/j.cam.2016.02.047</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>[formula omitted]-difference ; [formula omitted]-difference equations ; Algorithms ; Delta derivative ; Deltas ; Derivatives ; Initial value problems ; Mathematical analysis ; Mathematical models ; Nonlinearity ; Time ; Time scale</subject><ispartof>Journal of computational and applied mathematics, 2017-03, Vol.312, p.167-173</ispartof><rights>2016 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c330t-f2199391f53bb075cf4570a537acca3bb5b28de5249f346e1920997e74c3a9153</citedby><cites>FETCH-LOGICAL-c330t-f2199391f53bb075cf4570a537acca3bb5b28de5249f346e1920997e74c3a9153</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cam.2016.02.047$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,46000</link.rule.ids></links><search><creatorcontrib>Jafari, H.</creatorcontrib><creatorcontrib>Haghbin, A.</creatorcontrib><creatorcontrib>Johnston, S.J.</creatorcontrib><creatorcontrib>Baleanu, D.</creatorcontrib><title>A new algorithm for solving dynamic equations on a time scale</title><title>Journal of computational and applied mathematics</title><description>In this paper, we propose a numerical algorithm to solve a class of dynamic time scale equation which is called the q-difference equation. First, we apply the method for solving initial value problems (IVPs) which contain the first and second order delta derivatives. Illustrative examples show the usefulness of the method. Then we present applications of the method for solving the strongly non-linear damped q-difference equation. The results show that our method is more accurate than the other existing method.</description><subject>[formula omitted]-difference</subject><subject>[formula omitted]-difference equations</subject><subject>Algorithms</subject><subject>Delta derivative</subject><subject>Deltas</subject><subject>Derivatives</subject><subject>Initial value problems</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Nonlinearity</subject><subject>Time</subject><subject>Time scale</subject><issn>0377-0427</issn><issn>1879-1778</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kMtqwzAQRUVpoenjA7rTshu7Gj0ii9JFCH1BoJt2LRR5nCrYViI5Kfn7OqTrrmYY7rkwh5A7YCUwmD6sS--6ko9ryXjJpD4jE6i0KUDr6pxMmNC6YJLrS3KV85oxNjUgJ-RpRnv8oa5dxRSG7442MdEc233oV7Q-9K4LnuJ254YQ-0xjTx0dQoc0e9fiDbloXJvx9m9ek6-X58_5W7H4eH2fzxaFF4INRcPBGGGgUWK5ZFr5RirNnBLaee_Gm1ryqkbFpWmEnCIYzozRqKUXzoAS1-T-1LtJcbvDPNguZI9t63qMu2yhUmMZAD9G4RT1KeacsLGbFDqXDhaYPaqyazuqskdVlnE7qhqZxxOD4w_7gMlmH7D3WIeEfrB1DP_Qv7rVb8M</recordid><startdate>20170301</startdate><enddate>20170301</enddate><creator>Jafari, H.</creator><creator>Haghbin, A.</creator><creator>Johnston, S.J.</creator><creator>Baleanu, D.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20170301</creationdate><title>A new algorithm for solving dynamic equations on a time scale</title><author>Jafari, H. ; Haghbin, A. ; Johnston, S.J. ; Baleanu, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c330t-f2199391f53bb075cf4570a537acca3bb5b28de5249f346e1920997e74c3a9153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>[formula omitted]-difference</topic><topic>[formula omitted]-difference equations</topic><topic>Algorithms</topic><topic>Delta derivative</topic><topic>Deltas</topic><topic>Derivatives</topic><topic>Initial value problems</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Nonlinearity</topic><topic>Time</topic><topic>Time scale</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jafari, H.</creatorcontrib><creatorcontrib>Haghbin, A.</creatorcontrib><creatorcontrib>Johnston, S.J.</creatorcontrib><creatorcontrib>Baleanu, D.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational and applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jafari, H.</au><au>Haghbin, A.</au><au>Johnston, S.J.</au><au>Baleanu, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new algorithm for solving dynamic equations on a time scale</atitle><jtitle>Journal of computational and applied mathematics</jtitle><date>2017-03-01</date><risdate>2017</risdate><volume>312</volume><spage>167</spage><epage>173</epage><pages>167-173</pages><issn>0377-0427</issn><eissn>1879-1778</eissn><abstract>In this paper, we propose a numerical algorithm to solve a class of dynamic time scale equation which is called the q-difference equation. First, we apply the method for solving initial value problems (IVPs) which contain the first and second order delta derivatives. Illustrative examples show the usefulness of the method. Then we present applications of the method for solving the strongly non-linear damped q-difference equation. The results show that our method is more accurate than the other existing method.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.cam.2016.02.047</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0377-0427 |
ispartof | Journal of computational and applied mathematics, 2017-03, Vol.312, p.167-173 |
issn | 0377-0427 1879-1778 |
language | eng |
recordid | cdi_proquest_miscellaneous_1855371125 |
source | Access via ScienceDirect (Elsevier); EZB-FREE-00999 freely available EZB journals |
subjects | [formula omitted]-difference [formula omitted]-difference equations Algorithms Delta derivative Deltas Derivatives Initial value problems Mathematical analysis Mathematical models Nonlinearity Time Time scale |
title | A new algorithm for solving dynamic equations on a time scale |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T01%3A44%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20algorithm%20for%20solving%20dynamic%20equations%20on%20a%20time%20scale&rft.jtitle=Journal%20of%20computational%20and%20applied%20mathematics&rft.au=Jafari,%20H.&rft.date=2017-03-01&rft.volume=312&rft.spage=167&rft.epage=173&rft.pages=167-173&rft.issn=0377-0427&rft.eissn=1879-1778&rft_id=info:doi/10.1016/j.cam.2016.02.047&rft_dat=%3Cproquest_cross%3E1855371125%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1855371125&rft_id=info:pmid/&rft_els_id=S0377042716301030&rfr_iscdi=true |