A new algorithm for solving dynamic equations on a time scale

In this paper, we propose a numerical algorithm to solve a class of dynamic time scale equation which is called the q-difference equation. First, we apply the method for solving initial value problems (IVPs) which contain the first and second order delta derivatives. Illustrative examples show the u...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational and applied mathematics 2017-03, Vol.312, p.167-173
Hauptverfasser: Jafari, H., Haghbin, A., Johnston, S.J., Baleanu, D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 173
container_issue
container_start_page 167
container_title Journal of computational and applied mathematics
container_volume 312
creator Jafari, H.
Haghbin, A.
Johnston, S.J.
Baleanu, D.
description In this paper, we propose a numerical algorithm to solve a class of dynamic time scale equation which is called the q-difference equation. First, we apply the method for solving initial value problems (IVPs) which contain the first and second order delta derivatives. Illustrative examples show the usefulness of the method. Then we present applications of the method for solving the strongly non-linear damped q-difference equation. The results show that our method is more accurate than the other existing method.
doi_str_mv 10.1016/j.cam.2016.02.047
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1855371125</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0377042716301030</els_id><sourcerecordid>1855371125</sourcerecordid><originalsourceid>FETCH-LOGICAL-c330t-f2199391f53bb075cf4570a537acca3bb5b28de5249f346e1920997e74c3a9153</originalsourceid><addsrcrecordid>eNp9kMtqwzAQRUVpoenjA7rTshu7Gj0ii9JFCH1BoJt2LRR5nCrYViI5Kfn7OqTrrmYY7rkwh5A7YCUwmD6sS--6ko9ryXjJpD4jE6i0KUDr6pxMmNC6YJLrS3KV85oxNjUgJ-RpRnv8oa5dxRSG7442MdEc233oV7Q-9K4LnuJ254YQ-0xjTx0dQoc0e9fiDbloXJvx9m9ek6-X58_5W7H4eH2fzxaFF4INRcPBGGGgUWK5ZFr5RirNnBLaee_Gm1ryqkbFpWmEnCIYzozRqKUXzoAS1-T-1LtJcbvDPNguZI9t63qMu2yhUmMZAD9G4RT1KeacsLGbFDqXDhaYPaqyazuqskdVlnE7qhqZxxOD4w_7gMlmH7D3WIeEfrB1DP_Qv7rVb8M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1855371125</pqid></control><display><type>article</type><title>A new algorithm for solving dynamic equations on a time scale</title><source>Access via ScienceDirect (Elsevier)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Jafari, H. ; Haghbin, A. ; Johnston, S.J. ; Baleanu, D.</creator><creatorcontrib>Jafari, H. ; Haghbin, A. ; Johnston, S.J. ; Baleanu, D.</creatorcontrib><description>In this paper, we propose a numerical algorithm to solve a class of dynamic time scale equation which is called the q-difference equation. First, we apply the method for solving initial value problems (IVPs) which contain the first and second order delta derivatives. Illustrative examples show the usefulness of the method. Then we present applications of the method for solving the strongly non-linear damped q-difference equation. The results show that our method is more accurate than the other existing method.</description><identifier>ISSN: 0377-0427</identifier><identifier>EISSN: 1879-1778</identifier><identifier>DOI: 10.1016/j.cam.2016.02.047</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>[formula omitted]-difference ; [formula omitted]-difference equations ; Algorithms ; Delta derivative ; Deltas ; Derivatives ; Initial value problems ; Mathematical analysis ; Mathematical models ; Nonlinearity ; Time ; Time scale</subject><ispartof>Journal of computational and applied mathematics, 2017-03, Vol.312, p.167-173</ispartof><rights>2016 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c330t-f2199391f53bb075cf4570a537acca3bb5b28de5249f346e1920997e74c3a9153</citedby><cites>FETCH-LOGICAL-c330t-f2199391f53bb075cf4570a537acca3bb5b28de5249f346e1920997e74c3a9153</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cam.2016.02.047$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,46000</link.rule.ids></links><search><creatorcontrib>Jafari, H.</creatorcontrib><creatorcontrib>Haghbin, A.</creatorcontrib><creatorcontrib>Johnston, S.J.</creatorcontrib><creatorcontrib>Baleanu, D.</creatorcontrib><title>A new algorithm for solving dynamic equations on a time scale</title><title>Journal of computational and applied mathematics</title><description>In this paper, we propose a numerical algorithm to solve a class of dynamic time scale equation which is called the q-difference equation. First, we apply the method for solving initial value problems (IVPs) which contain the first and second order delta derivatives. Illustrative examples show the usefulness of the method. Then we present applications of the method for solving the strongly non-linear damped q-difference equation. The results show that our method is more accurate than the other existing method.</description><subject>[formula omitted]-difference</subject><subject>[formula omitted]-difference equations</subject><subject>Algorithms</subject><subject>Delta derivative</subject><subject>Deltas</subject><subject>Derivatives</subject><subject>Initial value problems</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Nonlinearity</subject><subject>Time</subject><subject>Time scale</subject><issn>0377-0427</issn><issn>1879-1778</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kMtqwzAQRUVpoenjA7rTshu7Gj0ii9JFCH1BoJt2LRR5nCrYViI5Kfn7OqTrrmYY7rkwh5A7YCUwmD6sS--6ko9ryXjJpD4jE6i0KUDr6pxMmNC6YJLrS3KV85oxNjUgJ-RpRnv8oa5dxRSG7442MdEc233oV7Q-9K4LnuJ254YQ-0xjTx0dQoc0e9fiDbloXJvx9m9ek6-X58_5W7H4eH2fzxaFF4INRcPBGGGgUWK5ZFr5RirNnBLaee_Gm1ryqkbFpWmEnCIYzozRqKUXzoAS1-T-1LtJcbvDPNguZI9t63qMu2yhUmMZAD9G4RT1KeacsLGbFDqXDhaYPaqyazuqskdVlnE7qhqZxxOD4w_7gMlmH7D3WIeEfrB1DP_Qv7rVb8M</recordid><startdate>20170301</startdate><enddate>20170301</enddate><creator>Jafari, H.</creator><creator>Haghbin, A.</creator><creator>Johnston, S.J.</creator><creator>Baleanu, D.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20170301</creationdate><title>A new algorithm for solving dynamic equations on a time scale</title><author>Jafari, H. ; Haghbin, A. ; Johnston, S.J. ; Baleanu, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c330t-f2199391f53bb075cf4570a537acca3bb5b28de5249f346e1920997e74c3a9153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>[formula omitted]-difference</topic><topic>[formula omitted]-difference equations</topic><topic>Algorithms</topic><topic>Delta derivative</topic><topic>Deltas</topic><topic>Derivatives</topic><topic>Initial value problems</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Nonlinearity</topic><topic>Time</topic><topic>Time scale</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jafari, H.</creatorcontrib><creatorcontrib>Haghbin, A.</creatorcontrib><creatorcontrib>Johnston, S.J.</creatorcontrib><creatorcontrib>Baleanu, D.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational and applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jafari, H.</au><au>Haghbin, A.</au><au>Johnston, S.J.</au><au>Baleanu, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new algorithm for solving dynamic equations on a time scale</atitle><jtitle>Journal of computational and applied mathematics</jtitle><date>2017-03-01</date><risdate>2017</risdate><volume>312</volume><spage>167</spage><epage>173</epage><pages>167-173</pages><issn>0377-0427</issn><eissn>1879-1778</eissn><abstract>In this paper, we propose a numerical algorithm to solve a class of dynamic time scale equation which is called the q-difference equation. First, we apply the method for solving initial value problems (IVPs) which contain the first and second order delta derivatives. Illustrative examples show the usefulness of the method. Then we present applications of the method for solving the strongly non-linear damped q-difference equation. The results show that our method is more accurate than the other existing method.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.cam.2016.02.047</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0377-0427
ispartof Journal of computational and applied mathematics, 2017-03, Vol.312, p.167-173
issn 0377-0427
1879-1778
language eng
recordid cdi_proquest_miscellaneous_1855371125
source Access via ScienceDirect (Elsevier); EZB-FREE-00999 freely available EZB journals
subjects [formula omitted]-difference
[formula omitted]-difference equations
Algorithms
Delta derivative
Deltas
Derivatives
Initial value problems
Mathematical analysis
Mathematical models
Nonlinearity
Time
Time scale
title A new algorithm for solving dynamic equations on a time scale
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T01%3A44%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20algorithm%20for%20solving%20dynamic%20equations%20on%20a%20time%20scale&rft.jtitle=Journal%20of%20computational%20and%20applied%20mathematics&rft.au=Jafari,%20H.&rft.date=2017-03-01&rft.volume=312&rft.spage=167&rft.epage=173&rft.pages=167-173&rft.issn=0377-0427&rft.eissn=1879-1778&rft_id=info:doi/10.1016/j.cam.2016.02.047&rft_dat=%3Cproquest_cross%3E1855371125%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1855371125&rft_id=info:pmid/&rft_els_id=S0377042716301030&rfr_iscdi=true