Subcellular cell geometry on micropillars regulates stem cell differentiation

Abstract While various material factors have been shown to influence cell behaviors, recent studies started to pay attention to the effects of some material cues on “subcellular” geometry of cells, such as self-deformation of cell nuclei. It is particularly interesting to examine whether a self defo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomaterials 2016-12, Vol.111, p.27-39
Hauptverfasser: Liu, Xiangnan, Liu, Ruili, Cao, Bin, Ye, Kai, Li, Shiyu, Gu, Yexin, Pan, Zhen, Ding, Jiandong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 39
container_issue
container_start_page 27
container_title Biomaterials
container_volume 111
creator Liu, Xiangnan
Liu, Ruili
Cao, Bin
Ye, Kai
Li, Shiyu
Gu, Yexin
Pan, Zhen
Ding, Jiandong
description Abstract While various material factors have been shown to influence cell behaviors, recent studies started to pay attention to the effects of some material cues on “subcellular” geometry of cells, such as self-deformation of cell nuclei. It is particularly interesting to examine whether a self deformation happens discontinuously like a first-order transition and whether subcellular geometry influences significantly the extent of stem cell differentiation. Herein we prepared a series of micropillar arrays of poly(lactide- co -glycolide) and discovered a first-order transition of nuclear shape as a function of micropillar height under the examined section area and interspacing of the pillars. The deformed state of the nuclei of mesenchymal stem cells (MSCs) was well maintained even after osteogenic or adipogenic induction for several days. The nuclear deformation on the micropillar arrays was accompanied with smaller projected areas of cells, but led to an enhanced osteogenesis and attenuated adipogenesis of the MSCs, which is different from the previously known relationship between morphology and differentiation of stem cells on flat substrates. Hence, the present study reveals that the geometry of cell nuclei may afford a new cue to regulate the lineage commitment of stem cells on the subcellular level.
doi_str_mv 10.1016/j.biomaterials.2016.09.023
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1855367891</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>1_s2_0_S0142961216305245</els_id><sourcerecordid>1837319085</sourcerecordid><originalsourceid>FETCH-LOGICAL-c553t-f984a8907eed86b61377e3bc3bb11a3e52e07a4a57f35b53dcb93933b7b4a2313</originalsourceid><addsrcrecordid>eNqNkk2PFCEQhonRuLOrf8F0PHnpFqimAQ8mZtXVZI2H1TMBunrD2B8j0Cbz76UzqzGe5gQUT9VbqbcIeclowyjrXu8bF5bJZozBjqnhJdZQ3VAOj8iOKalqoal4THaUtbzWHeMX5DKlPS1v2vKn5IJLyTrB2x35crc6j-O4jjZW26W6x2XCHI_VMldT8HE5hLF8pirifaEypiplnE5wH4YBI8452ByW-Rl5MpSW8PnDeUW-f_zw7fpTffv15vP1u9vaCwG5HrRqrdJUIvaqcx0DKRGcB-cYs4CCI5W2tUIOIJyA3jsNGsBJ11oODK7Iq1PdQ1x-rpiymULaGrIzLmsyTBWdTip9DgoSmKZKnIMKUIKqrqBvTmiZT0oRB3OIYbLxaBg1m0lmb_41yWwmGapNMakkv3jQWd2E_d_UP64U4P0JwDLDXwGjST7g7LEPEX02_RLO03n7Xxk_hjl4O_7AI6b9ssZ5y2EmcUPN3bYu27awDmhpQ8BvlQS-zA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1835385086</pqid></control><display><type>article</type><title>Subcellular cell geometry on micropillars regulates stem cell differentiation</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Liu, Xiangnan ; Liu, Ruili ; Cao, Bin ; Ye, Kai ; Li, Shiyu ; Gu, Yexin ; Pan, Zhen ; Ding, Jiandong</creator><creatorcontrib>Liu, Xiangnan ; Liu, Ruili ; Cao, Bin ; Ye, Kai ; Li, Shiyu ; Gu, Yexin ; Pan, Zhen ; Ding, Jiandong</creatorcontrib><description>Abstract While various material factors have been shown to influence cell behaviors, recent studies started to pay attention to the effects of some material cues on “subcellular” geometry of cells, such as self-deformation of cell nuclei. It is particularly interesting to examine whether a self deformation happens discontinuously like a first-order transition and whether subcellular geometry influences significantly the extent of stem cell differentiation. Herein we prepared a series of micropillar arrays of poly(lactide- co -glycolide) and discovered a first-order transition of nuclear shape as a function of micropillar height under the examined section area and interspacing of the pillars. The deformed state of the nuclei of mesenchymal stem cells (MSCs) was well maintained even after osteogenic or adipogenic induction for several days. The nuclear deformation on the micropillar arrays was accompanied with smaller projected areas of cells, but led to an enhanced osteogenesis and attenuated adipogenesis of the MSCs, which is different from the previously known relationship between morphology and differentiation of stem cells on flat substrates. Hence, the present study reveals that the geometry of cell nuclei may afford a new cue to regulate the lineage commitment of stem cells on the subcellular level.</description><identifier>ISSN: 0142-9612</identifier><identifier>EISSN: 1878-5905</identifier><identifier>DOI: 10.1016/j.biomaterials.2016.09.023</identifier><identifier>PMID: 27716524</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Advanced Basic Science ; Animals ; Animals, Newborn ; Arrays ; Biocompatibility ; Biocompatible Materials - chemistry ; Biomedical materials ; Cell Differentiation - physiology ; Cell nucleus ; Cell Size ; Cells, Cultured ; Compressive Strength - physiology ; Deformation ; Dentistry ; Differentiation ; Elastic Modulus - physiology ; Mechanotransduction, Cellular - physiology ; Micropillar array ; Nuclear deformation ; Nuclei ; Nuclei (cytology) ; Poly(lactide-co-glycolide) ; Rats ; Rats, Sprague-Dawley ; Stem cell differentiation ; Stem cells ; Stem Cells - cytology ; Stem Cells - physiology ; Stress, Mechanical ; Subcellular Fractions - physiology ; Subcellular Fractions - ultrastructure ; Surface Properties</subject><ispartof>Biomaterials, 2016-12, Vol.111, p.27-39</ispartof><rights>Elsevier Ltd</rights><rights>2016 Elsevier Ltd</rights><rights>Copyright © 2016 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c553t-f984a8907eed86b61377e3bc3bb11a3e52e07a4a57f35b53dcb93933b7b4a2313</citedby><cites>FETCH-LOGICAL-c553t-f984a8907eed86b61377e3bc3bb11a3e52e07a4a57f35b53dcb93933b7b4a2313</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0142961216305245$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27716524$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Xiangnan</creatorcontrib><creatorcontrib>Liu, Ruili</creatorcontrib><creatorcontrib>Cao, Bin</creatorcontrib><creatorcontrib>Ye, Kai</creatorcontrib><creatorcontrib>Li, Shiyu</creatorcontrib><creatorcontrib>Gu, Yexin</creatorcontrib><creatorcontrib>Pan, Zhen</creatorcontrib><creatorcontrib>Ding, Jiandong</creatorcontrib><title>Subcellular cell geometry on micropillars regulates stem cell differentiation</title><title>Biomaterials</title><addtitle>Biomaterials</addtitle><description>Abstract While various material factors have been shown to influence cell behaviors, recent studies started to pay attention to the effects of some material cues on “subcellular” geometry of cells, such as self-deformation of cell nuclei. It is particularly interesting to examine whether a self deformation happens discontinuously like a first-order transition and whether subcellular geometry influences significantly the extent of stem cell differentiation. Herein we prepared a series of micropillar arrays of poly(lactide- co -glycolide) and discovered a first-order transition of nuclear shape as a function of micropillar height under the examined section area and interspacing of the pillars. The deformed state of the nuclei of mesenchymal stem cells (MSCs) was well maintained even after osteogenic or adipogenic induction for several days. The nuclear deformation on the micropillar arrays was accompanied with smaller projected areas of cells, but led to an enhanced osteogenesis and attenuated adipogenesis of the MSCs, which is different from the previously known relationship between morphology and differentiation of stem cells on flat substrates. Hence, the present study reveals that the geometry of cell nuclei may afford a new cue to regulate the lineage commitment of stem cells on the subcellular level.</description><subject>Advanced Basic Science</subject><subject>Animals</subject><subject>Animals, Newborn</subject><subject>Arrays</subject><subject>Biocompatibility</subject><subject>Biocompatible Materials - chemistry</subject><subject>Biomedical materials</subject><subject>Cell Differentiation - physiology</subject><subject>Cell nucleus</subject><subject>Cell Size</subject><subject>Cells, Cultured</subject><subject>Compressive Strength - physiology</subject><subject>Deformation</subject><subject>Dentistry</subject><subject>Differentiation</subject><subject>Elastic Modulus - physiology</subject><subject>Mechanotransduction, Cellular - physiology</subject><subject>Micropillar array</subject><subject>Nuclear deformation</subject><subject>Nuclei</subject><subject>Nuclei (cytology)</subject><subject>Poly(lactide-co-glycolide)</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Stem cell differentiation</subject><subject>Stem cells</subject><subject>Stem Cells - cytology</subject><subject>Stem Cells - physiology</subject><subject>Stress, Mechanical</subject><subject>Subcellular Fractions - physiology</subject><subject>Subcellular Fractions - ultrastructure</subject><subject>Surface Properties</subject><issn>0142-9612</issn><issn>1878-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkk2PFCEQhonRuLOrf8F0PHnpFqimAQ8mZtXVZI2H1TMBunrD2B8j0Cbz76UzqzGe5gQUT9VbqbcIeclowyjrXu8bF5bJZozBjqnhJdZQ3VAOj8iOKalqoal4THaUtbzWHeMX5DKlPS1v2vKn5IJLyTrB2x35crc6j-O4jjZW26W6x2XCHI_VMldT8HE5hLF8pirifaEypiplnE5wH4YBI8452ByW-Rl5MpSW8PnDeUW-f_zw7fpTffv15vP1u9vaCwG5HrRqrdJUIvaqcx0DKRGcB-cYs4CCI5W2tUIOIJyA3jsNGsBJ11oODK7Iq1PdQ1x-rpiymULaGrIzLmsyTBWdTip9DgoSmKZKnIMKUIKqrqBvTmiZT0oRB3OIYbLxaBg1m0lmb_41yWwmGapNMakkv3jQWd2E_d_UP64U4P0JwDLDXwGjST7g7LEPEX02_RLO03n7Xxk_hjl4O_7AI6b9ssZ5y2EmcUPN3bYu27awDmhpQ8BvlQS-zA</recordid><startdate>20161201</startdate><enddate>20161201</enddate><creator>Liu, Xiangnan</creator><creator>Liu, Ruili</creator><creator>Cao, Bin</creator><creator>Ye, Kai</creator><creator>Li, Shiyu</creator><creator>Gu, Yexin</creator><creator>Pan, Zhen</creator><creator>Ding, Jiandong</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>F28</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20161201</creationdate><title>Subcellular cell geometry on micropillars regulates stem cell differentiation</title><author>Liu, Xiangnan ; Liu, Ruili ; Cao, Bin ; Ye, Kai ; Li, Shiyu ; Gu, Yexin ; Pan, Zhen ; Ding, Jiandong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c553t-f984a8907eed86b61377e3bc3bb11a3e52e07a4a57f35b53dcb93933b7b4a2313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Advanced Basic Science</topic><topic>Animals</topic><topic>Animals, Newborn</topic><topic>Arrays</topic><topic>Biocompatibility</topic><topic>Biocompatible Materials - chemistry</topic><topic>Biomedical materials</topic><topic>Cell Differentiation - physiology</topic><topic>Cell nucleus</topic><topic>Cell Size</topic><topic>Cells, Cultured</topic><topic>Compressive Strength - physiology</topic><topic>Deformation</topic><topic>Dentistry</topic><topic>Differentiation</topic><topic>Elastic Modulus - physiology</topic><topic>Mechanotransduction, Cellular - physiology</topic><topic>Micropillar array</topic><topic>Nuclear deformation</topic><topic>Nuclei</topic><topic>Nuclei (cytology)</topic><topic>Poly(lactide-co-glycolide)</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Stem cell differentiation</topic><topic>Stem cells</topic><topic>Stem Cells - cytology</topic><topic>Stem Cells - physiology</topic><topic>Stress, Mechanical</topic><topic>Subcellular Fractions - physiology</topic><topic>Subcellular Fractions - ultrastructure</topic><topic>Surface Properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Xiangnan</creatorcontrib><creatorcontrib>Liu, Ruili</creatorcontrib><creatorcontrib>Cao, Bin</creatorcontrib><creatorcontrib>Ye, Kai</creatorcontrib><creatorcontrib>Li, Shiyu</creatorcontrib><creatorcontrib>Gu, Yexin</creatorcontrib><creatorcontrib>Pan, Zhen</creatorcontrib><creatorcontrib>Ding, Jiandong</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Xiangnan</au><au>Liu, Ruili</au><au>Cao, Bin</au><au>Ye, Kai</au><au>Li, Shiyu</au><au>Gu, Yexin</au><au>Pan, Zhen</au><au>Ding, Jiandong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Subcellular cell geometry on micropillars regulates stem cell differentiation</atitle><jtitle>Biomaterials</jtitle><addtitle>Biomaterials</addtitle><date>2016-12-01</date><risdate>2016</risdate><volume>111</volume><spage>27</spage><epage>39</epage><pages>27-39</pages><issn>0142-9612</issn><eissn>1878-5905</eissn><abstract>Abstract While various material factors have been shown to influence cell behaviors, recent studies started to pay attention to the effects of some material cues on “subcellular” geometry of cells, such as self-deformation of cell nuclei. It is particularly interesting to examine whether a self deformation happens discontinuously like a first-order transition and whether subcellular geometry influences significantly the extent of stem cell differentiation. Herein we prepared a series of micropillar arrays of poly(lactide- co -glycolide) and discovered a first-order transition of nuclear shape as a function of micropillar height under the examined section area and interspacing of the pillars. The deformed state of the nuclei of mesenchymal stem cells (MSCs) was well maintained even after osteogenic or adipogenic induction for several days. The nuclear deformation on the micropillar arrays was accompanied with smaller projected areas of cells, but led to an enhanced osteogenesis and attenuated adipogenesis of the MSCs, which is different from the previously known relationship between morphology and differentiation of stem cells on flat substrates. Hence, the present study reveals that the geometry of cell nuclei may afford a new cue to regulate the lineage commitment of stem cells on the subcellular level.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>27716524</pmid><doi>10.1016/j.biomaterials.2016.09.023</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0142-9612
ispartof Biomaterials, 2016-12, Vol.111, p.27-39
issn 0142-9612
1878-5905
language eng
recordid cdi_proquest_miscellaneous_1855367891
source MEDLINE; Elsevier ScienceDirect Journals
subjects Advanced Basic Science
Animals
Animals, Newborn
Arrays
Biocompatibility
Biocompatible Materials - chemistry
Biomedical materials
Cell Differentiation - physiology
Cell nucleus
Cell Size
Cells, Cultured
Compressive Strength - physiology
Deformation
Dentistry
Differentiation
Elastic Modulus - physiology
Mechanotransduction, Cellular - physiology
Micropillar array
Nuclear deformation
Nuclei
Nuclei (cytology)
Poly(lactide-co-glycolide)
Rats
Rats, Sprague-Dawley
Stem cell differentiation
Stem cells
Stem Cells - cytology
Stem Cells - physiology
Stress, Mechanical
Subcellular Fractions - physiology
Subcellular Fractions - ultrastructure
Surface Properties
title Subcellular cell geometry on micropillars regulates stem cell differentiation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T15%3A02%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Subcellular%20cell%20geometry%20on%20micropillars%20regulates%20stem%20cell%20differentiation&rft.jtitle=Biomaterials&rft.au=Liu,%20Xiangnan&rft.date=2016-12-01&rft.volume=111&rft.spage=27&rft.epage=39&rft.pages=27-39&rft.issn=0142-9612&rft.eissn=1878-5905&rft_id=info:doi/10.1016/j.biomaterials.2016.09.023&rft_dat=%3Cproquest_cross%3E1837319085%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1835385086&rft_id=info:pmid/27716524&rft_els_id=1_s2_0_S0142961216305245&rfr_iscdi=true