Subcellular cell geometry on micropillars regulates stem cell differentiation
Abstract While various material factors have been shown to influence cell behaviors, recent studies started to pay attention to the effects of some material cues on “subcellular” geometry of cells, such as self-deformation of cell nuclei. It is particularly interesting to examine whether a self defo...
Gespeichert in:
Veröffentlicht in: | Biomaterials 2016-12, Vol.111, p.27-39 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 39 |
---|---|
container_issue | |
container_start_page | 27 |
container_title | Biomaterials |
container_volume | 111 |
creator | Liu, Xiangnan Liu, Ruili Cao, Bin Ye, Kai Li, Shiyu Gu, Yexin Pan, Zhen Ding, Jiandong |
description | Abstract While various material factors have been shown to influence cell behaviors, recent studies started to pay attention to the effects of some material cues on “subcellular” geometry of cells, such as self-deformation of cell nuclei. It is particularly interesting to examine whether a self deformation happens discontinuously like a first-order transition and whether subcellular geometry influences significantly the extent of stem cell differentiation. Herein we prepared a series of micropillar arrays of poly(lactide- co -glycolide) and discovered a first-order transition of nuclear shape as a function of micropillar height under the examined section area and interspacing of the pillars. The deformed state of the nuclei of mesenchymal stem cells (MSCs) was well maintained even after osteogenic or adipogenic induction for several days. The nuclear deformation on the micropillar arrays was accompanied with smaller projected areas of cells, but led to an enhanced osteogenesis and attenuated adipogenesis of the MSCs, which is different from the previously known relationship between morphology and differentiation of stem cells on flat substrates. Hence, the present study reveals that the geometry of cell nuclei may afford a new cue to regulate the lineage commitment of stem cells on the subcellular level. |
doi_str_mv | 10.1016/j.biomaterials.2016.09.023 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1855367891</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>1_s2_0_S0142961216305245</els_id><sourcerecordid>1837319085</sourcerecordid><originalsourceid>FETCH-LOGICAL-c553t-f984a8907eed86b61377e3bc3bb11a3e52e07a4a57f35b53dcb93933b7b4a2313</originalsourceid><addsrcrecordid>eNqNkk2PFCEQhonRuLOrf8F0PHnpFqimAQ8mZtXVZI2H1TMBunrD2B8j0Cbz76UzqzGe5gQUT9VbqbcIeclowyjrXu8bF5bJZozBjqnhJdZQ3VAOj8iOKalqoal4THaUtbzWHeMX5DKlPS1v2vKn5IJLyTrB2x35crc6j-O4jjZW26W6x2XCHI_VMldT8HE5hLF8pirifaEypiplnE5wH4YBI8452ByW-Rl5MpSW8PnDeUW-f_zw7fpTffv15vP1u9vaCwG5HrRqrdJUIvaqcx0DKRGcB-cYs4CCI5W2tUIOIJyA3jsNGsBJ11oODK7Iq1PdQ1x-rpiymULaGrIzLmsyTBWdTip9DgoSmKZKnIMKUIKqrqBvTmiZT0oRB3OIYbLxaBg1m0lmb_41yWwmGapNMakkv3jQWd2E_d_UP64U4P0JwDLDXwGjST7g7LEPEX02_RLO03n7Xxk_hjl4O_7AI6b9ssZ5y2EmcUPN3bYu27awDmhpQ8BvlQS-zA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1835385086</pqid></control><display><type>article</type><title>Subcellular cell geometry on micropillars regulates stem cell differentiation</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Liu, Xiangnan ; Liu, Ruili ; Cao, Bin ; Ye, Kai ; Li, Shiyu ; Gu, Yexin ; Pan, Zhen ; Ding, Jiandong</creator><creatorcontrib>Liu, Xiangnan ; Liu, Ruili ; Cao, Bin ; Ye, Kai ; Li, Shiyu ; Gu, Yexin ; Pan, Zhen ; Ding, Jiandong</creatorcontrib><description>Abstract While various material factors have been shown to influence cell behaviors, recent studies started to pay attention to the effects of some material cues on “subcellular” geometry of cells, such as self-deformation of cell nuclei. It is particularly interesting to examine whether a self deformation happens discontinuously like a first-order transition and whether subcellular geometry influences significantly the extent of stem cell differentiation. Herein we prepared a series of micropillar arrays of poly(lactide- co -glycolide) and discovered a first-order transition of nuclear shape as a function of micropillar height under the examined section area and interspacing of the pillars. The deformed state of the nuclei of mesenchymal stem cells (MSCs) was well maintained even after osteogenic or adipogenic induction for several days. The nuclear deformation on the micropillar arrays was accompanied with smaller projected areas of cells, but led to an enhanced osteogenesis and attenuated adipogenesis of the MSCs, which is different from the previously known relationship between morphology and differentiation of stem cells on flat substrates. Hence, the present study reveals that the geometry of cell nuclei may afford a new cue to regulate the lineage commitment of stem cells on the subcellular level.</description><identifier>ISSN: 0142-9612</identifier><identifier>EISSN: 1878-5905</identifier><identifier>DOI: 10.1016/j.biomaterials.2016.09.023</identifier><identifier>PMID: 27716524</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Advanced Basic Science ; Animals ; Animals, Newborn ; Arrays ; Biocompatibility ; Biocompatible Materials - chemistry ; Biomedical materials ; Cell Differentiation - physiology ; Cell nucleus ; Cell Size ; Cells, Cultured ; Compressive Strength - physiology ; Deformation ; Dentistry ; Differentiation ; Elastic Modulus - physiology ; Mechanotransduction, Cellular - physiology ; Micropillar array ; Nuclear deformation ; Nuclei ; Nuclei (cytology) ; Poly(lactide-co-glycolide) ; Rats ; Rats, Sprague-Dawley ; Stem cell differentiation ; Stem cells ; Stem Cells - cytology ; Stem Cells - physiology ; Stress, Mechanical ; Subcellular Fractions - physiology ; Subcellular Fractions - ultrastructure ; Surface Properties</subject><ispartof>Biomaterials, 2016-12, Vol.111, p.27-39</ispartof><rights>Elsevier Ltd</rights><rights>2016 Elsevier Ltd</rights><rights>Copyright © 2016 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c553t-f984a8907eed86b61377e3bc3bb11a3e52e07a4a57f35b53dcb93933b7b4a2313</citedby><cites>FETCH-LOGICAL-c553t-f984a8907eed86b61377e3bc3bb11a3e52e07a4a57f35b53dcb93933b7b4a2313</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0142961216305245$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27716524$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Xiangnan</creatorcontrib><creatorcontrib>Liu, Ruili</creatorcontrib><creatorcontrib>Cao, Bin</creatorcontrib><creatorcontrib>Ye, Kai</creatorcontrib><creatorcontrib>Li, Shiyu</creatorcontrib><creatorcontrib>Gu, Yexin</creatorcontrib><creatorcontrib>Pan, Zhen</creatorcontrib><creatorcontrib>Ding, Jiandong</creatorcontrib><title>Subcellular cell geometry on micropillars regulates stem cell differentiation</title><title>Biomaterials</title><addtitle>Biomaterials</addtitle><description>Abstract While various material factors have been shown to influence cell behaviors, recent studies started to pay attention to the effects of some material cues on “subcellular” geometry of cells, such as self-deformation of cell nuclei. It is particularly interesting to examine whether a self deformation happens discontinuously like a first-order transition and whether subcellular geometry influences significantly the extent of stem cell differentiation. Herein we prepared a series of micropillar arrays of poly(lactide- co -glycolide) and discovered a first-order transition of nuclear shape as a function of micropillar height under the examined section area and interspacing of the pillars. The deformed state of the nuclei of mesenchymal stem cells (MSCs) was well maintained even after osteogenic or adipogenic induction for several days. The nuclear deformation on the micropillar arrays was accompanied with smaller projected areas of cells, but led to an enhanced osteogenesis and attenuated adipogenesis of the MSCs, which is different from the previously known relationship between morphology and differentiation of stem cells on flat substrates. Hence, the present study reveals that the geometry of cell nuclei may afford a new cue to regulate the lineage commitment of stem cells on the subcellular level.</description><subject>Advanced Basic Science</subject><subject>Animals</subject><subject>Animals, Newborn</subject><subject>Arrays</subject><subject>Biocompatibility</subject><subject>Biocompatible Materials - chemistry</subject><subject>Biomedical materials</subject><subject>Cell Differentiation - physiology</subject><subject>Cell nucleus</subject><subject>Cell Size</subject><subject>Cells, Cultured</subject><subject>Compressive Strength - physiology</subject><subject>Deformation</subject><subject>Dentistry</subject><subject>Differentiation</subject><subject>Elastic Modulus - physiology</subject><subject>Mechanotransduction, Cellular - physiology</subject><subject>Micropillar array</subject><subject>Nuclear deformation</subject><subject>Nuclei</subject><subject>Nuclei (cytology)</subject><subject>Poly(lactide-co-glycolide)</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Stem cell differentiation</subject><subject>Stem cells</subject><subject>Stem Cells - cytology</subject><subject>Stem Cells - physiology</subject><subject>Stress, Mechanical</subject><subject>Subcellular Fractions - physiology</subject><subject>Subcellular Fractions - ultrastructure</subject><subject>Surface Properties</subject><issn>0142-9612</issn><issn>1878-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkk2PFCEQhonRuLOrf8F0PHnpFqimAQ8mZtXVZI2H1TMBunrD2B8j0Cbz76UzqzGe5gQUT9VbqbcIeclowyjrXu8bF5bJZozBjqnhJdZQ3VAOj8iOKalqoal4THaUtbzWHeMX5DKlPS1v2vKn5IJLyTrB2x35crc6j-O4jjZW26W6x2XCHI_VMldT8HE5hLF8pirifaEypiplnE5wH4YBI8452ByW-Rl5MpSW8PnDeUW-f_zw7fpTffv15vP1u9vaCwG5HrRqrdJUIvaqcx0DKRGcB-cYs4CCI5W2tUIOIJyA3jsNGsBJ11oODK7Iq1PdQ1x-rpiymULaGrIzLmsyTBWdTip9DgoSmKZKnIMKUIKqrqBvTmiZT0oRB3OIYbLxaBg1m0lmb_41yWwmGapNMakkv3jQWd2E_d_UP64U4P0JwDLDXwGjST7g7LEPEX02_RLO03n7Xxk_hjl4O_7AI6b9ssZ5y2EmcUPN3bYu27awDmhpQ8BvlQS-zA</recordid><startdate>20161201</startdate><enddate>20161201</enddate><creator>Liu, Xiangnan</creator><creator>Liu, Ruili</creator><creator>Cao, Bin</creator><creator>Ye, Kai</creator><creator>Li, Shiyu</creator><creator>Gu, Yexin</creator><creator>Pan, Zhen</creator><creator>Ding, Jiandong</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>F28</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20161201</creationdate><title>Subcellular cell geometry on micropillars regulates stem cell differentiation</title><author>Liu, Xiangnan ; Liu, Ruili ; Cao, Bin ; Ye, Kai ; Li, Shiyu ; Gu, Yexin ; Pan, Zhen ; Ding, Jiandong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c553t-f984a8907eed86b61377e3bc3bb11a3e52e07a4a57f35b53dcb93933b7b4a2313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Advanced Basic Science</topic><topic>Animals</topic><topic>Animals, Newborn</topic><topic>Arrays</topic><topic>Biocompatibility</topic><topic>Biocompatible Materials - chemistry</topic><topic>Biomedical materials</topic><topic>Cell Differentiation - physiology</topic><topic>Cell nucleus</topic><topic>Cell Size</topic><topic>Cells, Cultured</topic><topic>Compressive Strength - physiology</topic><topic>Deformation</topic><topic>Dentistry</topic><topic>Differentiation</topic><topic>Elastic Modulus - physiology</topic><topic>Mechanotransduction, Cellular - physiology</topic><topic>Micropillar array</topic><topic>Nuclear deformation</topic><topic>Nuclei</topic><topic>Nuclei (cytology)</topic><topic>Poly(lactide-co-glycolide)</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Stem cell differentiation</topic><topic>Stem cells</topic><topic>Stem Cells - cytology</topic><topic>Stem Cells - physiology</topic><topic>Stress, Mechanical</topic><topic>Subcellular Fractions - physiology</topic><topic>Subcellular Fractions - ultrastructure</topic><topic>Surface Properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Xiangnan</creatorcontrib><creatorcontrib>Liu, Ruili</creatorcontrib><creatorcontrib>Cao, Bin</creatorcontrib><creatorcontrib>Ye, Kai</creatorcontrib><creatorcontrib>Li, Shiyu</creatorcontrib><creatorcontrib>Gu, Yexin</creatorcontrib><creatorcontrib>Pan, Zhen</creatorcontrib><creatorcontrib>Ding, Jiandong</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Xiangnan</au><au>Liu, Ruili</au><au>Cao, Bin</au><au>Ye, Kai</au><au>Li, Shiyu</au><au>Gu, Yexin</au><au>Pan, Zhen</au><au>Ding, Jiandong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Subcellular cell geometry on micropillars regulates stem cell differentiation</atitle><jtitle>Biomaterials</jtitle><addtitle>Biomaterials</addtitle><date>2016-12-01</date><risdate>2016</risdate><volume>111</volume><spage>27</spage><epage>39</epage><pages>27-39</pages><issn>0142-9612</issn><eissn>1878-5905</eissn><abstract>Abstract While various material factors have been shown to influence cell behaviors, recent studies started to pay attention to the effects of some material cues on “subcellular” geometry of cells, such as self-deformation of cell nuclei. It is particularly interesting to examine whether a self deformation happens discontinuously like a first-order transition and whether subcellular geometry influences significantly the extent of stem cell differentiation. Herein we prepared a series of micropillar arrays of poly(lactide- co -glycolide) and discovered a first-order transition of nuclear shape as a function of micropillar height under the examined section area and interspacing of the pillars. The deformed state of the nuclei of mesenchymal stem cells (MSCs) was well maintained even after osteogenic or adipogenic induction for several days. The nuclear deformation on the micropillar arrays was accompanied with smaller projected areas of cells, but led to an enhanced osteogenesis and attenuated adipogenesis of the MSCs, which is different from the previously known relationship between morphology and differentiation of stem cells on flat substrates. Hence, the present study reveals that the geometry of cell nuclei may afford a new cue to regulate the lineage commitment of stem cells on the subcellular level.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>27716524</pmid><doi>10.1016/j.biomaterials.2016.09.023</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0142-9612 |
ispartof | Biomaterials, 2016-12, Vol.111, p.27-39 |
issn | 0142-9612 1878-5905 |
language | eng |
recordid | cdi_proquest_miscellaneous_1855367891 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Advanced Basic Science Animals Animals, Newborn Arrays Biocompatibility Biocompatible Materials - chemistry Biomedical materials Cell Differentiation - physiology Cell nucleus Cell Size Cells, Cultured Compressive Strength - physiology Deformation Dentistry Differentiation Elastic Modulus - physiology Mechanotransduction, Cellular - physiology Micropillar array Nuclear deformation Nuclei Nuclei (cytology) Poly(lactide-co-glycolide) Rats Rats, Sprague-Dawley Stem cell differentiation Stem cells Stem Cells - cytology Stem Cells - physiology Stress, Mechanical Subcellular Fractions - physiology Subcellular Fractions - ultrastructure Surface Properties |
title | Subcellular cell geometry on micropillars regulates stem cell differentiation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T15%3A02%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Subcellular%20cell%20geometry%20on%20micropillars%20regulates%20stem%20cell%20differentiation&rft.jtitle=Biomaterials&rft.au=Liu,%20Xiangnan&rft.date=2016-12-01&rft.volume=111&rft.spage=27&rft.epage=39&rft.pages=27-39&rft.issn=0142-9612&rft.eissn=1878-5905&rft_id=info:doi/10.1016/j.biomaterials.2016.09.023&rft_dat=%3Cproquest_cross%3E1837319085%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1835385086&rft_id=info:pmid/27716524&rft_els_id=1_s2_0_S0142961216305245&rfr_iscdi=true |