Boundary blow-up rate and uniqueness of the large solution for an elliptic cooperative system of logistic type

This paper ascertains the blow-up rates of each of the components of a singular boundary value problem related to a cooperative system of logistic type, in order to establish the uniqueness of the large solution. Astonishingly, the cooperative coupling does not change the blow-up rates of the uncoup...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear analysis: real world applications 2017-02, Vol.33, p.298-316
Hauptverfasser: López-Gómez, Julián, Maire, Luis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 316
container_issue
container_start_page 298
container_title Nonlinear analysis: real world applications
container_volume 33
creator López-Gómez, Julián
Maire, Luis
description This paper ascertains the blow-up rates of each of the components of a singular boundary value problem related to a cooperative system of logistic type, in order to establish the uniqueness of the large solution. Astonishingly, the cooperative coupling does not change the blow-up rates of the uncoupled system provided these blow-up rates are sufficiently close, though it changes exactly one of them, keeping invariant the other, when they are bounded away. This seems to be the first time where this change of behavior has been documented in the literature.
doi_str_mv 10.1016/j.nonrwa.2016.07.001
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1855367219</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S146812181630061X</els_id><sourcerecordid>1855367219</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-fe5f5b546f500ba8068a38cebd0fd8407d799e8f0c2497296b3b9cb5fa62f9553</originalsourceid><addsrcrecordid>eNp9kE1PAyEQhjdGE2v1H3jg6GVX2C_gYqKNX0kTL3omLDtUmi2swLbpv5dNPXtiyDzvZObJsluCC4JJe78trLP-IIsy_QpMC4zJWbYgjLK8oYSfp7puWU5Kwi6zqxC2CaCkIovMPrnJ9tIfUTe4Qz6NyMsISNoeTdb8TGAhBOQ0it-ABuk3gIIbpmicRdr5BCIYBjNGo5ByboQUN_sEHUOE3Rwc3MaEuR2PI1xnF1oOAW7-3mX29fL8uXrL1x-v76vHda6qisdcQ6Obrqlb3WDcSYZbJiumoOux7lmNaU85B6axKmtOS952VcdV12jZlpo3TbXM7k5zR-_SESGKnQkqbSotuCkIwhLU0pLwhNYnVHkXggctRm92yYggWMx6xVac9IpZr8BUJHsp9nCKQTpjb8CLoAxYBb3xoKLonfl_wC84LYfo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1855367219</pqid></control><display><type>article</type><title>Boundary blow-up rate and uniqueness of the large solution for an elliptic cooperative system of logistic type</title><source>Elsevier ScienceDirect Journals</source><creator>López-Gómez, Julián ; Maire, Luis</creator><creatorcontrib>López-Gómez, Julián ; Maire, Luis</creatorcontrib><description>This paper ascertains the blow-up rates of each of the components of a singular boundary value problem related to a cooperative system of logistic type, in order to establish the uniqueness of the large solution. Astonishingly, the cooperative coupling does not change the blow-up rates of the uncoupled system provided these blow-up rates are sufficiently close, though it changes exactly one of them, keeping invariant the other, when they are bounded away. This seems to be the first time where this change of behavior has been documented in the literature.</description><identifier>ISSN: 1468-1218</identifier><identifier>EISSN: 1878-5719</identifier><identifier>DOI: 10.1016/j.nonrwa.2016.07.001</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Blowing-up rates ; Boundaries ; Boundary value problems ; Cooperative systems ; Coupling ; Invariants ; Large solutions ; Logistics ; Mathematical analysis ; Nonlinearity ; Uniqueness ; Vanishing weights at variable rates</subject><ispartof>Nonlinear analysis: real world applications, 2017-02, Vol.33, p.298-316</ispartof><rights>2016 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-fe5f5b546f500ba8068a38cebd0fd8407d799e8f0c2497296b3b9cb5fa62f9553</citedby><cites>FETCH-LOGICAL-c339t-fe5f5b546f500ba8068a38cebd0fd8407d799e8f0c2497296b3b9cb5fa62f9553</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S146812181630061X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>López-Gómez, Julián</creatorcontrib><creatorcontrib>Maire, Luis</creatorcontrib><title>Boundary blow-up rate and uniqueness of the large solution for an elliptic cooperative system of logistic type</title><title>Nonlinear analysis: real world applications</title><description>This paper ascertains the blow-up rates of each of the components of a singular boundary value problem related to a cooperative system of logistic type, in order to establish the uniqueness of the large solution. Astonishingly, the cooperative coupling does not change the blow-up rates of the uncoupled system provided these blow-up rates are sufficiently close, though it changes exactly one of them, keeping invariant the other, when they are bounded away. This seems to be the first time where this change of behavior has been documented in the literature.</description><subject>Blowing-up rates</subject><subject>Boundaries</subject><subject>Boundary value problems</subject><subject>Cooperative systems</subject><subject>Coupling</subject><subject>Invariants</subject><subject>Large solutions</subject><subject>Logistics</subject><subject>Mathematical analysis</subject><subject>Nonlinearity</subject><subject>Uniqueness</subject><subject>Vanishing weights at variable rates</subject><issn>1468-1218</issn><issn>1878-5719</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kE1PAyEQhjdGE2v1H3jg6GVX2C_gYqKNX0kTL3omLDtUmi2swLbpv5dNPXtiyDzvZObJsluCC4JJe78trLP-IIsy_QpMC4zJWbYgjLK8oYSfp7puWU5Kwi6zqxC2CaCkIovMPrnJ9tIfUTe4Qz6NyMsISNoeTdb8TGAhBOQ0it-ABuk3gIIbpmicRdr5BCIYBjNGo5ByboQUN_sEHUOE3Rwc3MaEuR2PI1xnF1oOAW7-3mX29fL8uXrL1x-v76vHda6qisdcQ6Obrqlb3WDcSYZbJiumoOux7lmNaU85B6axKmtOS952VcdV12jZlpo3TbXM7k5zR-_SESGKnQkqbSotuCkIwhLU0pLwhNYnVHkXggctRm92yYggWMx6xVac9IpZr8BUJHsp9nCKQTpjb8CLoAxYBb3xoKLonfl_wC84LYfo</recordid><startdate>201702</startdate><enddate>201702</enddate><creator>López-Gómez, Julián</creator><creator>Maire, Luis</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201702</creationdate><title>Boundary blow-up rate and uniqueness of the large solution for an elliptic cooperative system of logistic type</title><author>López-Gómez, Julián ; Maire, Luis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-fe5f5b546f500ba8068a38cebd0fd8407d799e8f0c2497296b3b9cb5fa62f9553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Blowing-up rates</topic><topic>Boundaries</topic><topic>Boundary value problems</topic><topic>Cooperative systems</topic><topic>Coupling</topic><topic>Invariants</topic><topic>Large solutions</topic><topic>Logistics</topic><topic>Mathematical analysis</topic><topic>Nonlinearity</topic><topic>Uniqueness</topic><topic>Vanishing weights at variable rates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>López-Gómez, Julián</creatorcontrib><creatorcontrib>Maire, Luis</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Nonlinear analysis: real world applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>López-Gómez, Julián</au><au>Maire, Luis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Boundary blow-up rate and uniqueness of the large solution for an elliptic cooperative system of logistic type</atitle><jtitle>Nonlinear analysis: real world applications</jtitle><date>2017-02</date><risdate>2017</risdate><volume>33</volume><spage>298</spage><epage>316</epage><pages>298-316</pages><issn>1468-1218</issn><eissn>1878-5719</eissn><abstract>This paper ascertains the blow-up rates of each of the components of a singular boundary value problem related to a cooperative system of logistic type, in order to establish the uniqueness of the large solution. Astonishingly, the cooperative coupling does not change the blow-up rates of the uncoupled system provided these blow-up rates are sufficiently close, though it changes exactly one of them, keeping invariant the other, when they are bounded away. This seems to be the first time where this change of behavior has been documented in the literature.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.nonrwa.2016.07.001</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1468-1218
ispartof Nonlinear analysis: real world applications, 2017-02, Vol.33, p.298-316
issn 1468-1218
1878-5719
language eng
recordid cdi_proquest_miscellaneous_1855367219
source Elsevier ScienceDirect Journals
subjects Blowing-up rates
Boundaries
Boundary value problems
Cooperative systems
Coupling
Invariants
Large solutions
Logistics
Mathematical analysis
Nonlinearity
Uniqueness
Vanishing weights at variable rates
title Boundary blow-up rate and uniqueness of the large solution for an elliptic cooperative system of logistic type
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T17%3A34%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Boundary%20blow-up%20rate%20and%20uniqueness%20of%20the%20large%20solution%20for%20an%20elliptic%20cooperative%20system%20of%20logistic%20type&rft.jtitle=Nonlinear%20analysis:%20real%20world%20applications&rft.au=L%C3%B3pez-G%C3%B3mez,%20Juli%C3%A1n&rft.date=2017-02&rft.volume=33&rft.spage=298&rft.epage=316&rft.pages=298-316&rft.issn=1468-1218&rft.eissn=1878-5719&rft_id=info:doi/10.1016/j.nonrwa.2016.07.001&rft_dat=%3Cproquest_cross%3E1855367219%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1855367219&rft_id=info:pmid/&rft_els_id=S146812181630061X&rfr_iscdi=true