Boundary blow-up rate and uniqueness of the large solution for an elliptic cooperative system of logistic type
This paper ascertains the blow-up rates of each of the components of a singular boundary value problem related to a cooperative system of logistic type, in order to establish the uniqueness of the large solution. Astonishingly, the cooperative coupling does not change the blow-up rates of the uncoup...
Gespeichert in:
Veröffentlicht in: | Nonlinear analysis: real world applications 2017-02, Vol.33, p.298-316 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 316 |
---|---|
container_issue | |
container_start_page | 298 |
container_title | Nonlinear analysis: real world applications |
container_volume | 33 |
creator | López-Gómez, Julián Maire, Luis |
description | This paper ascertains the blow-up rates of each of the components of a singular boundary value problem related to a cooperative system of logistic type, in order to establish the uniqueness of the large solution. Astonishingly, the cooperative coupling does not change the blow-up rates of the uncoupled system provided these blow-up rates are sufficiently close, though it changes exactly one of them, keeping invariant the other, when they are bounded away. This seems to be the first time where this change of behavior has been documented in the literature. |
doi_str_mv | 10.1016/j.nonrwa.2016.07.001 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1855367219</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S146812181630061X</els_id><sourcerecordid>1855367219</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-fe5f5b546f500ba8068a38cebd0fd8407d799e8f0c2497296b3b9cb5fa62f9553</originalsourceid><addsrcrecordid>eNp9kE1PAyEQhjdGE2v1H3jg6GVX2C_gYqKNX0kTL3omLDtUmi2swLbpv5dNPXtiyDzvZObJsluCC4JJe78trLP-IIsy_QpMC4zJWbYgjLK8oYSfp7puWU5Kwi6zqxC2CaCkIovMPrnJ9tIfUTe4Qz6NyMsISNoeTdb8TGAhBOQ0it-ABuk3gIIbpmicRdr5BCIYBjNGo5ByboQUN_sEHUOE3Rwc3MaEuR2PI1xnF1oOAW7-3mX29fL8uXrL1x-v76vHda6qisdcQ6Obrqlb3WDcSYZbJiumoOux7lmNaU85B6axKmtOS952VcdV12jZlpo3TbXM7k5zR-_SESGKnQkqbSotuCkIwhLU0pLwhNYnVHkXggctRm92yYggWMx6xVac9IpZr8BUJHsp9nCKQTpjb8CLoAxYBb3xoKLonfl_wC84LYfo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1855367219</pqid></control><display><type>article</type><title>Boundary blow-up rate and uniqueness of the large solution for an elliptic cooperative system of logistic type</title><source>Elsevier ScienceDirect Journals</source><creator>López-Gómez, Julián ; Maire, Luis</creator><creatorcontrib>López-Gómez, Julián ; Maire, Luis</creatorcontrib><description>This paper ascertains the blow-up rates of each of the components of a singular boundary value problem related to a cooperative system of logistic type, in order to establish the uniqueness of the large solution. Astonishingly, the cooperative coupling does not change the blow-up rates of the uncoupled system provided these blow-up rates are sufficiently close, though it changes exactly one of them, keeping invariant the other, when they are bounded away. This seems to be the first time where this change of behavior has been documented in the literature.</description><identifier>ISSN: 1468-1218</identifier><identifier>EISSN: 1878-5719</identifier><identifier>DOI: 10.1016/j.nonrwa.2016.07.001</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Blowing-up rates ; Boundaries ; Boundary value problems ; Cooperative systems ; Coupling ; Invariants ; Large solutions ; Logistics ; Mathematical analysis ; Nonlinearity ; Uniqueness ; Vanishing weights at variable rates</subject><ispartof>Nonlinear analysis: real world applications, 2017-02, Vol.33, p.298-316</ispartof><rights>2016 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-fe5f5b546f500ba8068a38cebd0fd8407d799e8f0c2497296b3b9cb5fa62f9553</citedby><cites>FETCH-LOGICAL-c339t-fe5f5b546f500ba8068a38cebd0fd8407d799e8f0c2497296b3b9cb5fa62f9553</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S146812181630061X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>López-Gómez, Julián</creatorcontrib><creatorcontrib>Maire, Luis</creatorcontrib><title>Boundary blow-up rate and uniqueness of the large solution for an elliptic cooperative system of logistic type</title><title>Nonlinear analysis: real world applications</title><description>This paper ascertains the blow-up rates of each of the components of a singular boundary value problem related to a cooperative system of logistic type, in order to establish the uniqueness of the large solution. Astonishingly, the cooperative coupling does not change the blow-up rates of the uncoupled system provided these blow-up rates are sufficiently close, though it changes exactly one of them, keeping invariant the other, when they are bounded away. This seems to be the first time where this change of behavior has been documented in the literature.</description><subject>Blowing-up rates</subject><subject>Boundaries</subject><subject>Boundary value problems</subject><subject>Cooperative systems</subject><subject>Coupling</subject><subject>Invariants</subject><subject>Large solutions</subject><subject>Logistics</subject><subject>Mathematical analysis</subject><subject>Nonlinearity</subject><subject>Uniqueness</subject><subject>Vanishing weights at variable rates</subject><issn>1468-1218</issn><issn>1878-5719</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kE1PAyEQhjdGE2v1H3jg6GVX2C_gYqKNX0kTL3omLDtUmi2swLbpv5dNPXtiyDzvZObJsluCC4JJe78trLP-IIsy_QpMC4zJWbYgjLK8oYSfp7puWU5Kwi6zqxC2CaCkIovMPrnJ9tIfUTe4Qz6NyMsISNoeTdb8TGAhBOQ0it-ABuk3gIIbpmicRdr5BCIYBjNGo5ByboQUN_sEHUOE3Rwc3MaEuR2PI1xnF1oOAW7-3mX29fL8uXrL1x-v76vHda6qisdcQ6Obrqlb3WDcSYZbJiumoOux7lmNaU85B6axKmtOS952VcdV12jZlpo3TbXM7k5zR-_SESGKnQkqbSotuCkIwhLU0pLwhNYnVHkXggctRm92yYggWMx6xVac9IpZr8BUJHsp9nCKQTpjb8CLoAxYBb3xoKLonfl_wC84LYfo</recordid><startdate>201702</startdate><enddate>201702</enddate><creator>López-Gómez, Julián</creator><creator>Maire, Luis</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201702</creationdate><title>Boundary blow-up rate and uniqueness of the large solution for an elliptic cooperative system of logistic type</title><author>López-Gómez, Julián ; Maire, Luis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-fe5f5b546f500ba8068a38cebd0fd8407d799e8f0c2497296b3b9cb5fa62f9553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Blowing-up rates</topic><topic>Boundaries</topic><topic>Boundary value problems</topic><topic>Cooperative systems</topic><topic>Coupling</topic><topic>Invariants</topic><topic>Large solutions</topic><topic>Logistics</topic><topic>Mathematical analysis</topic><topic>Nonlinearity</topic><topic>Uniqueness</topic><topic>Vanishing weights at variable rates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>López-Gómez, Julián</creatorcontrib><creatorcontrib>Maire, Luis</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Nonlinear analysis: real world applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>López-Gómez, Julián</au><au>Maire, Luis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Boundary blow-up rate and uniqueness of the large solution for an elliptic cooperative system of logistic type</atitle><jtitle>Nonlinear analysis: real world applications</jtitle><date>2017-02</date><risdate>2017</risdate><volume>33</volume><spage>298</spage><epage>316</epage><pages>298-316</pages><issn>1468-1218</issn><eissn>1878-5719</eissn><abstract>This paper ascertains the blow-up rates of each of the components of a singular boundary value problem related to a cooperative system of logistic type, in order to establish the uniqueness of the large solution. Astonishingly, the cooperative coupling does not change the blow-up rates of the uncoupled system provided these blow-up rates are sufficiently close, though it changes exactly one of them, keeping invariant the other, when they are bounded away. This seems to be the first time where this change of behavior has been documented in the literature.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.nonrwa.2016.07.001</doi><tpages>19</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1468-1218 |
ispartof | Nonlinear analysis: real world applications, 2017-02, Vol.33, p.298-316 |
issn | 1468-1218 1878-5719 |
language | eng |
recordid | cdi_proquest_miscellaneous_1855367219 |
source | Elsevier ScienceDirect Journals |
subjects | Blowing-up rates Boundaries Boundary value problems Cooperative systems Coupling Invariants Large solutions Logistics Mathematical analysis Nonlinearity Uniqueness Vanishing weights at variable rates |
title | Boundary blow-up rate and uniqueness of the large solution for an elliptic cooperative system of logistic type |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T17%3A34%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Boundary%20blow-up%20rate%20and%20uniqueness%20of%20the%20large%20solution%20for%20an%20elliptic%20cooperative%20system%20of%20logistic%20type&rft.jtitle=Nonlinear%20analysis:%20real%20world%20applications&rft.au=L%C3%B3pez-G%C3%B3mez,%20Juli%C3%A1n&rft.date=2017-02&rft.volume=33&rft.spage=298&rft.epage=316&rft.pages=298-316&rft.issn=1468-1218&rft.eissn=1878-5719&rft_id=info:doi/10.1016/j.nonrwa.2016.07.001&rft_dat=%3Cproquest_cross%3E1855367219%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1855367219&rft_id=info:pmid/&rft_els_id=S146812181630061X&rfr_iscdi=true |