SAR Image Despeckling Based on Lapped Transform Domain Dual Local Wiener Filtering Framework
In this paper, a Synthetic Aperture Radar (SAR) image despeckling technique, based on lapped orthogonal transform (LOT) domain dual local Wiener filtering framework, is proposed. A logarithmic transformation is employed to convert the speckle contribution into additive noise. It is demonstrated that...
Gespeichert in:
Veröffentlicht in: | IAENG international journal of computer science 2015-11, Vol.42 (4) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | |
container_title | IAENG international journal of computer science |
container_volume | 42 |
creator | Hazarika, Deepika Nath, Vijay Kumar Bhuyan, Manabendra |
description | In this paper, a Synthetic Aperture Radar (SAR) image despeckling technique, based on lapped orthogonal transform (LOT) domain dual local Wiener filtering framework, is proposed. A logarithmic transformation is employed to convert the speckle contribution into additive noise. It is demonstrated that the local distribution of dyadic rearranged LOT coefficients of logarithmically transformed SAR images are well approximated using Gaussian distribution. The proposed LT domain structure employs two local Wiener filtering procedures to despeckle the SAR images. The signal variance is estimated using elliptic directional windows for different oriented subbands. The motivation of using lapped transform (LT) is that they are robust to oversmoothing and preserve better oscillatory image components like textures. Experiments on real SAR images, show that the proposed method reduces speckle noise effectively while preserving textures and outperforms well known iterative probabilistic patch-based (PPB) filter and a recent directionlet based method, with much less computational complexity. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_1855366607</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1855366607</sourcerecordid><originalsourceid>FETCH-LOGICAL-p103t-b55c7773f59e1acf82375ba0b9a3671499962bf93a372ff30b6fe047bbae9ca73</originalsourceid><addsrcrecordid>eNotjFFLwzAURosoOOb-Qx59KbS9TdI8ztXqoCDoRB-EcVNvRlib1KTFv-9keznfefnOVbLIq1ylqijK64sLLj5vk1WMVmdlKaGqOCySr7f1K9sOeCBWUxypO_bWHdgDRvpm3rEWx_Fku4AuGh8GVvsBrWP1jD1rfXfihyVHgTW2nyj8n5uAA_36cLxLbgz2kVaXXSbvzeNu85y2L0_bzbpNxzyDKdWcd1JKMFxRjp2pCpBcY6YVgpB5qZQShTYKEGRhDGRaGMpKqTWS6lDCMrk_d8fgf2aK036wsaO-R0d-jvu84hyEEJmEP0TbUqU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1855366607</pqid></control><display><type>article</type><title>SAR Image Despeckling Based on Lapped Transform Domain Dual Local Wiener Filtering Framework</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Hazarika, Deepika ; Nath, Vijay Kumar ; Bhuyan, Manabendra</creator><creatorcontrib>Hazarika, Deepika ; Nath, Vijay Kumar ; Bhuyan, Manabendra</creatorcontrib><description>In this paper, a Synthetic Aperture Radar (SAR) image despeckling technique, based on lapped orthogonal transform (LOT) domain dual local Wiener filtering framework, is proposed. A logarithmic transformation is employed to convert the speckle contribution into additive noise. It is demonstrated that the local distribution of dyadic rearranged LOT coefficients of logarithmically transformed SAR images are well approximated using Gaussian distribution. The proposed LT domain structure employs two local Wiener filtering procedures to despeckle the SAR images. The signal variance is estimated using elliptic directional windows for different oriented subbands. The motivation of using lapped transform (LT) is that they are robust to oversmoothing and preserve better oscillatory image components like textures. Experiments on real SAR images, show that the proposed method reduces speckle noise effectively while preserving textures and outperforms well known iterative probabilistic patch-based (PPB) filter and a recent directionlet based method, with much less computational complexity.</description><identifier>ISSN: 1819-656X</identifier><identifier>EISSN: 1819-9224</identifier><language>eng</language><subject>Noise ; Preserves ; Radar imagery ; Surface layer ; Synthetic aperture radar ; Texture ; Transforms ; Wiener filtering</subject><ispartof>IAENG international journal of computer science, 2015-11, Vol.42 (4)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780</link.rule.ids></links><search><creatorcontrib>Hazarika, Deepika</creatorcontrib><creatorcontrib>Nath, Vijay Kumar</creatorcontrib><creatorcontrib>Bhuyan, Manabendra</creatorcontrib><title>SAR Image Despeckling Based on Lapped Transform Domain Dual Local Wiener Filtering Framework</title><title>IAENG international journal of computer science</title><description>In this paper, a Synthetic Aperture Radar (SAR) image despeckling technique, based on lapped orthogonal transform (LOT) domain dual local Wiener filtering framework, is proposed. A logarithmic transformation is employed to convert the speckle contribution into additive noise. It is demonstrated that the local distribution of dyadic rearranged LOT coefficients of logarithmically transformed SAR images are well approximated using Gaussian distribution. The proposed LT domain structure employs two local Wiener filtering procedures to despeckle the SAR images. The signal variance is estimated using elliptic directional windows for different oriented subbands. The motivation of using lapped transform (LT) is that they are robust to oversmoothing and preserve better oscillatory image components like textures. Experiments on real SAR images, show that the proposed method reduces speckle noise effectively while preserving textures and outperforms well known iterative probabilistic patch-based (PPB) filter and a recent directionlet based method, with much less computational complexity.</description><subject>Noise</subject><subject>Preserves</subject><subject>Radar imagery</subject><subject>Surface layer</subject><subject>Synthetic aperture radar</subject><subject>Texture</subject><subject>Transforms</subject><subject>Wiener filtering</subject><issn>1819-656X</issn><issn>1819-9224</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNotjFFLwzAURosoOOb-Qx59KbS9TdI8ztXqoCDoRB-EcVNvRlib1KTFv-9keznfefnOVbLIq1ylqijK64sLLj5vk1WMVmdlKaGqOCySr7f1K9sOeCBWUxypO_bWHdgDRvpm3rEWx_Fku4AuGh8GVvsBrWP1jD1rfXfihyVHgTW2nyj8n5uAA_36cLxLbgz2kVaXXSbvzeNu85y2L0_bzbpNxzyDKdWcd1JKMFxRjp2pCpBcY6YVgpB5qZQShTYKEGRhDGRaGMpKqTWS6lDCMrk_d8fgf2aK036wsaO-R0d-jvu84hyEEJmEP0TbUqU</recordid><startdate>20151121</startdate><enddate>20151121</enddate><creator>Hazarika, Deepika</creator><creator>Nath, Vijay Kumar</creator><creator>Bhuyan, Manabendra</creator><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20151121</creationdate><title>SAR Image Despeckling Based on Lapped Transform Domain Dual Local Wiener Filtering Framework</title><author>Hazarika, Deepika ; Nath, Vijay Kumar ; Bhuyan, Manabendra</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p103t-b55c7773f59e1acf82375ba0b9a3671499962bf93a372ff30b6fe047bbae9ca73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Noise</topic><topic>Preserves</topic><topic>Radar imagery</topic><topic>Surface layer</topic><topic>Synthetic aperture radar</topic><topic>Texture</topic><topic>Transforms</topic><topic>Wiener filtering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hazarika, Deepika</creatorcontrib><creatorcontrib>Nath, Vijay Kumar</creatorcontrib><creatorcontrib>Bhuyan, Manabendra</creatorcontrib><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IAENG international journal of computer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hazarika, Deepika</au><au>Nath, Vijay Kumar</au><au>Bhuyan, Manabendra</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SAR Image Despeckling Based on Lapped Transform Domain Dual Local Wiener Filtering Framework</atitle><jtitle>IAENG international journal of computer science</jtitle><date>2015-11-21</date><risdate>2015</risdate><volume>42</volume><issue>4</issue><issn>1819-656X</issn><eissn>1819-9224</eissn><abstract>In this paper, a Synthetic Aperture Radar (SAR) image despeckling technique, based on lapped orthogonal transform (LOT) domain dual local Wiener filtering framework, is proposed. A logarithmic transformation is employed to convert the speckle contribution into additive noise. It is demonstrated that the local distribution of dyadic rearranged LOT coefficients of logarithmically transformed SAR images are well approximated using Gaussian distribution. The proposed LT domain structure employs two local Wiener filtering procedures to despeckle the SAR images. The signal variance is estimated using elliptic directional windows for different oriented subbands. The motivation of using lapped transform (LT) is that they are robust to oversmoothing and preserve better oscillatory image components like textures. Experiments on real SAR images, show that the proposed method reduces speckle noise effectively while preserving textures and outperforms well known iterative probabilistic patch-based (PPB) filter and a recent directionlet based method, with much less computational complexity.</abstract></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1819-656X |
ispartof | IAENG international journal of computer science, 2015-11, Vol.42 (4) |
issn | 1819-656X 1819-9224 |
language | eng |
recordid | cdi_proquest_miscellaneous_1855366607 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Noise Preserves Radar imagery Surface layer Synthetic aperture radar Texture Transforms Wiener filtering |
title | SAR Image Despeckling Based on Lapped Transform Domain Dual Local Wiener Filtering Framework |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T02%3A13%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SAR%20Image%20Despeckling%20Based%20on%20Lapped%20Transform%20Domain%20Dual%20Local%20Wiener%20Filtering%20Framework&rft.jtitle=IAENG%20international%20journal%20of%20computer%20science&rft.au=Hazarika,%20Deepika&rft.date=2015-11-21&rft.volume=42&rft.issue=4&rft.issn=1819-656X&rft.eissn=1819-9224&rft_id=info:doi/&rft_dat=%3Cproquest%3E1855366607%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1855366607&rft_id=info:pmid/&rfr_iscdi=true |