Modeling Interlaminar Shear Crack-Jump Phenomenon in Fiber-Reinforced Polymer Composites
This paper discusses the simulation technique for the development of a validated finite element model to capture the stable shear crack-jump phenomenon in carbon fiber-reinforced polymer composite laminates. The interlaminar cracking process is characterized using a 16-ply unidirectional ([0]16) end...
Gespeichert in:
Veröffentlicht in: | Advanced Materials Research 2015-10, Vol.1125, p.74-78 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 78 |
---|---|
container_issue | |
container_start_page | 74 |
container_title | Advanced Materials Research |
container_volume | 1125 |
creator | Koloor, S.S.R. Tamin, M.N. Ayatollahi, Majid R. |
description | This paper discusses the simulation technique for the development of a validated finite element model to capture the stable shear crack-jump phenomenon in carbon fiber-reinforced polymer composite laminates. The interlaminar cracking process is characterized using a 16-ply unidirectional ([0]16) end-notch flexure (ENF) specimens. Complementary FE models of the test setup are developed to capture the mechanics of the observed interlaminar crack-jump phenomenon. The cohesive interface response is represented by a damage model with bilinear traction-displacement softening law. Close comparison of measured and FE-predicted load-central deflection response of the beam specimen serves to validate the FE model for the stable shear crack-jump. FE simulation predicts an early onset of damage at the interlaminar crack front corresponding to 13.4 pct. of the maximum deflection at fracture. The mechanism of stable crack-jump is described by the characteristic evolution of the interface damage parameter, and quantified by the damage dissipation energy. |
doi_str_mv | 10.4028/www.scientific.net/AMR.1125.74 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1855366127</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1855366127</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1734-399faf8466829a757382426b5980003f80aeab0ddcc88f0bbe59101cefefa4443</originalsourceid><addsrcrecordid>eNqNkU1rFEEQhhs_wBjzHwYE8TKT6s_puYhhMRpJMEQFb01Pb7XbcaZ77Z5lyb-3lxUUTx6q6lBvvfXCQ8grCp0Aps_3-31XXMC4BB9cF3E5v7i56yhlsuvFI3JClWKtHrR8TM6GXnPgmktFKTypO2CsVUrDM_K8lHsAJerdCfl2k9Y4hfi9uYoL5snOIdrcfN5g7ats3Y_2427eNrcbjGmuFZsQm8swYm7vMESfssN1c5umhxnrRZq3qYQFywvy1Nup4NnveUq-Xr77svrQXn96f7W6uG4d7blo-TB467Wo0dhge9lzzQRToxw0AHCvwaIdYb12TmsP44hyoEAdevRWCMFPyeuj7zannzssi5lDcThNNmLaFUO1lFwpyvoqffmP9D7tcqzpDO0HoCCkplX15qhyOZWS0ZttDrPND4aCOYAwFYT5A8JUEKaCMAcQpj8kens0WLKNZUG3-evP_1n8Ag08l1I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1790104581</pqid></control><display><type>article</type><title>Modeling Interlaminar Shear Crack-Jump Phenomenon in Fiber-Reinforced Polymer Composites</title><source>Scientific.net Journals</source><creator>Koloor, S.S.R. ; Tamin, M.N. ; Ayatollahi, Majid R.</creator><creatorcontrib>Koloor, S.S.R. ; Tamin, M.N. ; Ayatollahi, Majid R.</creatorcontrib><description>This paper discusses the simulation technique for the development of a validated finite element model to capture the stable shear crack-jump phenomenon in carbon fiber-reinforced polymer composite laminates. The interlaminar cracking process is characterized using a 16-ply unidirectional ([0]16) end-notch flexure (ENF) specimens. Complementary FE models of the test setup are developed to capture the mechanics of the observed interlaminar crack-jump phenomenon. The cohesive interface response is represented by a damage model with bilinear traction-displacement softening law. Close comparison of measured and FE-predicted load-central deflection response of the beam specimen serves to validate the FE model for the stable shear crack-jump. FE simulation predicts an early onset of damage at the interlaminar crack front corresponding to 13.4 pct. of the maximum deflection at fracture. The mechanism of stable crack-jump is described by the characteristic evolution of the interface damage parameter, and quantified by the damage dissipation energy.</description><identifier>ISSN: 1022-6680</identifier><identifier>ISSN: 1662-8985</identifier><identifier>ISBN: 9783038356110</identifier><identifier>ISBN: 3038356115</identifier><identifier>EISSN: 1662-8985</identifier><identifier>DOI: 10.4028/www.scientific.net/AMR.1125.74</identifier><language>eng</language><publisher>Zurich: Trans Tech Publications Ltd</publisher><subject>Computer simulation ; Damage ; Deflection ; Finite element method ; Interlaminar ; Mathematical models ; Polymer matrix composites ; Shear</subject><ispartof>Advanced Materials Research, 2015-10, Vol.1125, p.74-78</ispartof><rights>2015 Trans Tech Publications Ltd</rights><rights>Copyright Trans Tech Publications Ltd. Oct 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1734-399faf8466829a757382426b5980003f80aeab0ddcc88f0bbe59101cefefa4443</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.scientific.net/Image/TitleCover/4185?width=600</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Koloor, S.S.R.</creatorcontrib><creatorcontrib>Tamin, M.N.</creatorcontrib><creatorcontrib>Ayatollahi, Majid R.</creatorcontrib><title>Modeling Interlaminar Shear Crack-Jump Phenomenon in Fiber-Reinforced Polymer Composites</title><title>Advanced Materials Research</title><description>This paper discusses the simulation technique for the development of a validated finite element model to capture the stable shear crack-jump phenomenon in carbon fiber-reinforced polymer composite laminates. The interlaminar cracking process is characterized using a 16-ply unidirectional ([0]16) end-notch flexure (ENF) specimens. Complementary FE models of the test setup are developed to capture the mechanics of the observed interlaminar crack-jump phenomenon. The cohesive interface response is represented by a damage model with bilinear traction-displacement softening law. Close comparison of measured and FE-predicted load-central deflection response of the beam specimen serves to validate the FE model for the stable shear crack-jump. FE simulation predicts an early onset of damage at the interlaminar crack front corresponding to 13.4 pct. of the maximum deflection at fracture. The mechanism of stable crack-jump is described by the characteristic evolution of the interface damage parameter, and quantified by the damage dissipation energy.</description><subject>Computer simulation</subject><subject>Damage</subject><subject>Deflection</subject><subject>Finite element method</subject><subject>Interlaminar</subject><subject>Mathematical models</subject><subject>Polymer matrix composites</subject><subject>Shear</subject><issn>1022-6680</issn><issn>1662-8985</issn><issn>1662-8985</issn><isbn>9783038356110</isbn><isbn>3038356115</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNkU1rFEEQhhs_wBjzHwYE8TKT6s_puYhhMRpJMEQFb01Pb7XbcaZ77Z5lyb-3lxUUTx6q6lBvvfXCQ8grCp0Aps_3-31XXMC4BB9cF3E5v7i56yhlsuvFI3JClWKtHrR8TM6GXnPgmktFKTypO2CsVUrDM_K8lHsAJerdCfl2k9Y4hfi9uYoL5snOIdrcfN5g7ats3Y_2427eNrcbjGmuFZsQm8swYm7vMESfssN1c5umhxnrRZq3qYQFywvy1Nup4NnveUq-Xr77svrQXn96f7W6uG4d7blo-TB467Wo0dhge9lzzQRToxw0AHCvwaIdYb12TmsP44hyoEAdevRWCMFPyeuj7zannzssi5lDcThNNmLaFUO1lFwpyvoqffmP9D7tcqzpDO0HoCCkplX15qhyOZWS0ZttDrPND4aCOYAwFYT5A8JUEKaCMAcQpj8kens0WLKNZUG3-evP_1n8Ag08l1I</recordid><startdate>20151002</startdate><enddate>20151002</enddate><creator>Koloor, S.S.R.</creator><creator>Tamin, M.N.</creator><creator>Ayatollahi, Majid R.</creator><general>Trans Tech Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20151002</creationdate><title>Modeling Interlaminar Shear Crack-Jump Phenomenon in Fiber-Reinforced Polymer Composites</title><author>Koloor, S.S.R. ; Tamin, M.N. ; Ayatollahi, Majid R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1734-399faf8466829a757382426b5980003f80aeab0ddcc88f0bbe59101cefefa4443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Computer simulation</topic><topic>Damage</topic><topic>Deflection</topic><topic>Finite element method</topic><topic>Interlaminar</topic><topic>Mathematical models</topic><topic>Polymer matrix composites</topic><topic>Shear</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Koloor, S.S.R.</creatorcontrib><creatorcontrib>Tamin, M.N.</creatorcontrib><creatorcontrib>Ayatollahi, Majid R.</creatorcontrib><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Advanced Materials Research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Koloor, S.S.R.</au><au>Tamin, M.N.</au><au>Ayatollahi, Majid R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling Interlaminar Shear Crack-Jump Phenomenon in Fiber-Reinforced Polymer Composites</atitle><jtitle>Advanced Materials Research</jtitle><date>2015-10-02</date><risdate>2015</risdate><volume>1125</volume><spage>74</spage><epage>78</epage><pages>74-78</pages><issn>1022-6680</issn><issn>1662-8985</issn><eissn>1662-8985</eissn><isbn>9783038356110</isbn><isbn>3038356115</isbn><abstract>This paper discusses the simulation technique for the development of a validated finite element model to capture the stable shear crack-jump phenomenon in carbon fiber-reinforced polymer composite laminates. The interlaminar cracking process is characterized using a 16-ply unidirectional ([0]16) end-notch flexure (ENF) specimens. Complementary FE models of the test setup are developed to capture the mechanics of the observed interlaminar crack-jump phenomenon. The cohesive interface response is represented by a damage model with bilinear traction-displacement softening law. Close comparison of measured and FE-predicted load-central deflection response of the beam specimen serves to validate the FE model for the stable shear crack-jump. FE simulation predicts an early onset of damage at the interlaminar crack front corresponding to 13.4 pct. of the maximum deflection at fracture. The mechanism of stable crack-jump is described by the characteristic evolution of the interface damage parameter, and quantified by the damage dissipation energy.</abstract><cop>Zurich</cop><pub>Trans Tech Publications Ltd</pub><doi>10.4028/www.scientific.net/AMR.1125.74</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1022-6680 |
ispartof | Advanced Materials Research, 2015-10, Vol.1125, p.74-78 |
issn | 1022-6680 1662-8985 1662-8985 |
language | eng |
recordid | cdi_proquest_miscellaneous_1855366127 |
source | Scientific.net Journals |
subjects | Computer simulation Damage Deflection Finite element method Interlaminar Mathematical models Polymer matrix composites Shear |
title | Modeling Interlaminar Shear Crack-Jump Phenomenon in Fiber-Reinforced Polymer Composites |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T05%3A16%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20Interlaminar%20Shear%20Crack-Jump%20Phenomenon%20in%20Fiber-Reinforced%20Polymer%20Composites&rft.jtitle=Advanced%20Materials%20Research&rft.au=Koloor,%20S.S.R.&rft.date=2015-10-02&rft.volume=1125&rft.spage=74&rft.epage=78&rft.pages=74-78&rft.issn=1022-6680&rft.eissn=1662-8985&rft.isbn=9783038356110&rft.isbn_list=3038356115&rft_id=info:doi/10.4028/www.scientific.net/AMR.1125.74&rft_dat=%3Cproquest_cross%3E1855366127%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1790104581&rft_id=info:pmid/&rfr_iscdi=true |