Detection of electromagnetic degree of coherence with nanoscatterers: comparison with Young's interferometer

We show theoretically that the (spectral) electromagnetic degree of spatial coherence of a random, stationary light beam can be measured by using two dipolar nanoscatterers instead of aperture diffraction as in traditional Young's interferometer. The method is based on considering individually...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics letters 2015-06, Vol.40 (12), p.2898-2901
Hauptverfasser: Leppänen, Lasse-Petteri, Saastamoinen, Kimmo, Friberg, Ari T, Setälä, Tero
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2901
container_issue 12
container_start_page 2898
container_title Optics letters
container_volume 40
creator Leppänen, Lasse-Petteri
Saastamoinen, Kimmo
Friberg, Ari T
Setälä, Tero
description We show theoretically that the (spectral) electromagnetic degree of spatial coherence of a random, stationary light beam can be measured by using two dipolar nanoscatterers instead of aperture diffraction as in traditional Young's interferometer. The method is based on considering individually the correlation functions associated with the six polarization states that make up the coherence (two-point) Stokes parameters and observing separately the visibilities and the locations of the intensity fringes created by the interfering dipole fields, leading to a complete characterization of the beam's second-order spatial coherence. The novel technique, although introduced in this work for beams, paves the way toward the detection of spatial coherence in nonparaxial optical near-fields for which the use of nanoscatterers is necessary.
doi_str_mv 10.1364/OL.40.002898
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1855365695</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1689620206</sourcerecordid><originalsourceid>FETCH-LOGICAL-c324t-f5765d20474f6b901eb1338fc0b357c3bb25982e5a06c808f90be36480eafda93</originalsourceid><addsrcrecordid>eNqFkb1PwzAQxS0EgvKxMaNsMJBy8VdsNlQ-pUpdYGCKHPfcBiVxsVMh_ntcCqxMd7r30zvpPUJOCxgXTPKr2XTMYQxAlVY7ZFQIpnNear5LRlBwmWuh6QE5jPENAGTJ2D45oBJKSTWMSHuLA9qh8X3mXYZt2oPvzKLHobHZHBcBcaNYv8SAvcXsoxmWWW96H60ZhnQM8TrJ3cqEJiabb_3Vr_vFecyaPhEOk2V6E47JnjNtxJOfeURe7u-eJ4_5dPbwNLmZ5pZRPuROlFLMKfCSO1lrKLAuGFPOQs1EaVldU6EVRWFAWgXKaagxRaEAjZsbzY7IxdZ3Ffz7GuNQdU202LamR7-OVaGEYFJILf5HpdKSAgWZ0MstaoOPMaCrVqHpTPisCqg2VVSzacWh2laR8LMf53Xd4fwP_s2efQG5hoUo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1689620206</pqid></control><display><type>article</type><title>Detection of electromagnetic degree of coherence with nanoscatterers: comparison with Young's interferometer</title><source>Optica Publishing Group Journals</source><creator>Leppänen, Lasse-Petteri ; Saastamoinen, Kimmo ; Friberg, Ari T ; Setälä, Tero</creator><creatorcontrib>Leppänen, Lasse-Petteri ; Saastamoinen, Kimmo ; Friberg, Ari T ; Setälä, Tero</creatorcontrib><description>We show theoretically that the (spectral) electromagnetic degree of spatial coherence of a random, stationary light beam can be measured by using two dipolar nanoscatterers instead of aperture diffraction as in traditional Young's interferometer. The method is based on considering individually the correlation functions associated with the six polarization states that make up the coherence (two-point) Stokes parameters and observing separately the visibilities and the locations of the intensity fringes created by the interfering dipole fields, leading to a complete characterization of the beam's second-order spatial coherence. The novel technique, although introduced in this work for beams, paves the way toward the detection of spatial coherence in nonparaxial optical near-fields for which the use of nanoscatterers is necessary.</description><identifier>ISSN: 0146-9592</identifier><identifier>EISSN: 1539-4794</identifier><identifier>DOI: 10.1364/OL.40.002898</identifier><identifier>PMID: 26076290</identifier><language>eng</language><publisher>United States</publisher><subject>Beams (radiation) ; Coherence ; Correlation ; Diffraction ; Interferometers ; Nanostructure ; Spectra ; Stokes parameters</subject><ispartof>Optics letters, 2015-06, Vol.40 (12), p.2898-2901</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c324t-f5765d20474f6b901eb1338fc0b357c3bb25982e5a06c808f90be36480eafda93</citedby><cites>FETCH-LOGICAL-c324t-f5765d20474f6b901eb1338fc0b357c3bb25982e5a06c808f90be36480eafda93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3256,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26076290$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Leppänen, Lasse-Petteri</creatorcontrib><creatorcontrib>Saastamoinen, Kimmo</creatorcontrib><creatorcontrib>Friberg, Ari T</creatorcontrib><creatorcontrib>Setälä, Tero</creatorcontrib><title>Detection of electromagnetic degree of coherence with nanoscatterers: comparison with Young's interferometer</title><title>Optics letters</title><addtitle>Opt Lett</addtitle><description>We show theoretically that the (spectral) electromagnetic degree of spatial coherence of a random, stationary light beam can be measured by using two dipolar nanoscatterers instead of aperture diffraction as in traditional Young's interferometer. The method is based on considering individually the correlation functions associated with the six polarization states that make up the coherence (two-point) Stokes parameters and observing separately the visibilities and the locations of the intensity fringes created by the interfering dipole fields, leading to a complete characterization of the beam's second-order spatial coherence. The novel technique, although introduced in this work for beams, paves the way toward the detection of spatial coherence in nonparaxial optical near-fields for which the use of nanoscatterers is necessary.</description><subject>Beams (radiation)</subject><subject>Coherence</subject><subject>Correlation</subject><subject>Diffraction</subject><subject>Interferometers</subject><subject>Nanostructure</subject><subject>Spectra</subject><subject>Stokes parameters</subject><issn>0146-9592</issn><issn>1539-4794</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkb1PwzAQxS0EgvKxMaNsMJBy8VdsNlQ-pUpdYGCKHPfcBiVxsVMh_ntcCqxMd7r30zvpPUJOCxgXTPKr2XTMYQxAlVY7ZFQIpnNear5LRlBwmWuh6QE5jPENAGTJ2D45oBJKSTWMSHuLA9qh8X3mXYZt2oPvzKLHobHZHBcBcaNYv8SAvcXsoxmWWW96H60ZhnQM8TrJ3cqEJiabb_3Vr_vFecyaPhEOk2V6E47JnjNtxJOfeURe7u-eJ4_5dPbwNLmZ5pZRPuROlFLMKfCSO1lrKLAuGFPOQs1EaVldU6EVRWFAWgXKaagxRaEAjZsbzY7IxdZ3Ffz7GuNQdU202LamR7-OVaGEYFJILf5HpdKSAgWZ0MstaoOPMaCrVqHpTPisCqg2VVSzacWh2laR8LMf53Xd4fwP_s2efQG5hoUo</recordid><startdate>20150615</startdate><enddate>20150615</enddate><creator>Leppänen, Lasse-Petteri</creator><creator>Saastamoinen, Kimmo</creator><creator>Friberg, Ari T</creator><creator>Setälä, Tero</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20150615</creationdate><title>Detection of electromagnetic degree of coherence with nanoscatterers: comparison with Young's interferometer</title><author>Leppänen, Lasse-Petteri ; Saastamoinen, Kimmo ; Friberg, Ari T ; Setälä, Tero</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c324t-f5765d20474f6b901eb1338fc0b357c3bb25982e5a06c808f90be36480eafda93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Beams (radiation)</topic><topic>Coherence</topic><topic>Correlation</topic><topic>Diffraction</topic><topic>Interferometers</topic><topic>Nanostructure</topic><topic>Spectra</topic><topic>Stokes parameters</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leppänen, Lasse-Petteri</creatorcontrib><creatorcontrib>Saastamoinen, Kimmo</creatorcontrib><creatorcontrib>Friberg, Ari T</creatorcontrib><creatorcontrib>Setälä, Tero</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Optics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leppänen, Lasse-Petteri</au><au>Saastamoinen, Kimmo</au><au>Friberg, Ari T</au><au>Setälä, Tero</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detection of electromagnetic degree of coherence with nanoscatterers: comparison with Young's interferometer</atitle><jtitle>Optics letters</jtitle><addtitle>Opt Lett</addtitle><date>2015-06-15</date><risdate>2015</risdate><volume>40</volume><issue>12</issue><spage>2898</spage><epage>2901</epage><pages>2898-2901</pages><issn>0146-9592</issn><eissn>1539-4794</eissn><abstract>We show theoretically that the (spectral) electromagnetic degree of spatial coherence of a random, stationary light beam can be measured by using two dipolar nanoscatterers instead of aperture diffraction as in traditional Young's interferometer. The method is based on considering individually the correlation functions associated with the six polarization states that make up the coherence (two-point) Stokes parameters and observing separately the visibilities and the locations of the intensity fringes created by the interfering dipole fields, leading to a complete characterization of the beam's second-order spatial coherence. The novel technique, although introduced in this work for beams, paves the way toward the detection of spatial coherence in nonparaxial optical near-fields for which the use of nanoscatterers is necessary.</abstract><cop>United States</cop><pmid>26076290</pmid><doi>10.1364/OL.40.002898</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0146-9592
ispartof Optics letters, 2015-06, Vol.40 (12), p.2898-2901
issn 0146-9592
1539-4794
language eng
recordid cdi_proquest_miscellaneous_1855365695
source Optica Publishing Group Journals
subjects Beams (radiation)
Coherence
Correlation
Diffraction
Interferometers
Nanostructure
Spectra
Stokes parameters
title Detection of electromagnetic degree of coherence with nanoscatterers: comparison with Young's interferometer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T04%3A05%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detection%20of%20electromagnetic%20degree%20of%20coherence%20with%20nanoscatterers:%20comparison%20with%20Young's%20interferometer&rft.jtitle=Optics%20letters&rft.au=Lepp%C3%A4nen,%20Lasse-Petteri&rft.date=2015-06-15&rft.volume=40&rft.issue=12&rft.spage=2898&rft.epage=2901&rft.pages=2898-2901&rft.issn=0146-9592&rft.eissn=1539-4794&rft_id=info:doi/10.1364/OL.40.002898&rft_dat=%3Cproquest_cross%3E1689620206%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1689620206&rft_id=info:pmid/26076290&rfr_iscdi=true