The Extra Connectivity, Extra Conditional Diagnosability, and t/m-Diagnosability of Arrangement Graphs

Extra connectivity is an important indicator of the robustness of a multiprocessor system in presence of failing processors. The g-extra conditional diagnosability and the t/m-diagnosability are two important diagnostic strategies at system-level that can significantly enhance the system's self...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on reliability 2016-09, Vol.65 (3), p.1248-1262
Hauptverfasser: Xu, Li, Lin, Limei, Zhou, Shuming, Hsieh, Sun-Yuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1262
container_issue 3
container_start_page 1248
container_title IEEE transactions on reliability
container_volume 65
creator Xu, Li
Lin, Limei
Zhou, Shuming
Hsieh, Sun-Yuan
description Extra connectivity is an important indicator of the robustness of a multiprocessor system in presence of failing processors. The g-extra conditional diagnosability and the t/m-diagnosability are two important diagnostic strategies at system-level that can significantly enhance the system's self-diagnosing capability. The g-extra conditional diagnosability is defined under the assumption that every component of the system removing a set of faulty vertices has more than g vertices. The t/m-diagnosis strategy can detect up to t faulty processors which might include at most m misdiagnosed processors, where m is typically a small integer number. In this paper, we analyze the combinatorial properties and fault tolerant ability for an (n, k)-arrangement graph, denoted by A n,k , a well-known interconnection network proposed for multiprocessor systems. We first establish that the A n,k 's one-extra connectivity is (2k - 1) (n - k) - 1 (k ≥ 3, n ≥ k + 2), two-extra connectivity is (3k - 2)(n - k) - 3 (k ≥ 4, n ≥ k + 2), and three-extra connectivity is (4k - 4)(n - k) - 4 ( k ≥ 4, n ≥ k + 2 or k ≥ 3, n ≥ k + 3), respectively. And then, we address the g-extra conditional diagnosability of A n,k under the PMC model for 1 ≤ g ≤ 3. Finally, we determine that the (n, k)-arrangement graph A n,k is [(2k - 1)(n - k) - 1]/1-diagnosable (k ≥ 4, n ≥ k + 2), [(3k - 2)(n - k) - 3]/2-diagnosable (k ≥ 4, n ≥ k + 2), and [(4k - 4)(n - k) - 4]/3-diagnosable (k ≥ 4, n ≥ k + 3) under the PMC model, respectively.
doi_str_mv 10.1109/TR.2016.2570559
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1855364813</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7488225</ieee_id><sourcerecordid>1855364813</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-12cd9f4e2ff2a4e9c7b784110047bb8ac5aad76ace77591031038bcd311aa3173</originalsourceid><addsrcrecordid>eNpVkM1LAzEQxYMoWKtnD1726MFtk2zSJMdSaxUKQlnPYTabbSP7UZNU7H_v1hZFGBjm8XsD7yF0S_CIEKzG-WpEMZmMKBeYc3WGBoRzmRJByTkaYExkqjhVl-gqhPf-ZEzJAaryjU3mX9FDMuva1proPl3cP_xppYuua6FOHh2s2y5A4eofAtoyieMm_a8nXZVMvYd2bRvbxmThYbsJ1-iigjrYm9MeoreneT57Tpevi5fZdJkaqlhMCTWlqpilVUWBWWVEISTr42EmikKC4QClmICxQnBFcNaPLEyZEQKQEZEN0f3x79Z3Hzsbom5cMLauobXdLmgiOc8mTJKsR8dH1PguBG8rvfWuAb_XBOtDozpf6UOj-tRo77g7Opy19pcWTEpKefYN4ztyeg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1855364813</pqid></control><display><type>article</type><title>The Extra Connectivity, Extra Conditional Diagnosability, and t/m-Diagnosability of Arrangement Graphs</title><source>IEEE Electronic Library (IEL)</source><creator>Xu, Li ; Lin, Limei ; Zhou, Shuming ; Hsieh, Sun-Yuan</creator><creatorcontrib>Xu, Li ; Lin, Limei ; Zhou, Shuming ; Hsieh, Sun-Yuan</creatorcontrib><description>Extra connectivity is an important indicator of the robustness of a multiprocessor system in presence of failing processors. The g-extra conditional diagnosability and the t/m-diagnosability are two important diagnostic strategies at system-level that can significantly enhance the system's self-diagnosing capability. The g-extra conditional diagnosability is defined under the assumption that every component of the system removing a set of faulty vertices has more than g vertices. The t/m-diagnosis strategy can detect up to t faulty processors which might include at most m misdiagnosed processors, where m is typically a small integer number. In this paper, we analyze the combinatorial properties and fault tolerant ability for an (n, k)-arrangement graph, denoted by A n,k , a well-known interconnection network proposed for multiprocessor systems. We first establish that the A n,k 's one-extra connectivity is (2k - 1) (n - k) - 1 (k ≥ 3, n ≥ k + 2), two-extra connectivity is (3k - 2)(n - k) - 3 (k ≥ 4, n ≥ k + 2), and three-extra connectivity is (4k - 4)(n - k) - 4 ( k ≥ 4, n ≥ k + 2 or k ≥ 3, n ≥ k + 3), respectively. And then, we address the g-extra conditional diagnosability of A n,k under the PMC model for 1 ≤ g ≤ 3. Finally, we determine that the (n, k)-arrangement graph A n,k is [(2k - 1)(n - k) - 1]/1-diagnosable (k ≥ 4, n ≥ k + 2), [(3k - 2)(n - k) - 3]/2-diagnosable (k ≥ 4, n ≥ k + 2), and [(4k - 4)(n - k) - 4]/3-diagnosable (k ≥ 4, n ≥ k + 3) under the PMC model, respectively.</description><identifier>ISSN: 0018-9529</identifier><identifier>EISSN: 1558-1721</identifier><identifier>DOI: 10.1109/TR.2016.2570559</identifier><identifier>CODEN: IERQAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Arrangement graphs ; Combinatorial analysis ; Diagnostic systems ; extra conditional diagnosability ; extra connectivity ; Fault tolerance ; Fault tolerant systems ; Graphs ; Hypercubes ; Multiprocessing systems ; Multiprocessor ; PMC model ; Processors ; Program processors ; Robustness ; Strategy ; system-level diagnosis ; t/m-diagnosability ; Testing</subject><ispartof>IEEE transactions on reliability, 2016-09, Vol.65 (3), p.1248-1262</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-12cd9f4e2ff2a4e9c7b784110047bb8ac5aad76ace77591031038bcd311aa3173</citedby><cites>FETCH-LOGICAL-c294t-12cd9f4e2ff2a4e9c7b784110047bb8ac5aad76ace77591031038bcd311aa3173</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7488225$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7488225$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xu, Li</creatorcontrib><creatorcontrib>Lin, Limei</creatorcontrib><creatorcontrib>Zhou, Shuming</creatorcontrib><creatorcontrib>Hsieh, Sun-Yuan</creatorcontrib><title>The Extra Connectivity, Extra Conditional Diagnosability, and t/m-Diagnosability of Arrangement Graphs</title><title>IEEE transactions on reliability</title><addtitle>TR</addtitle><description>Extra connectivity is an important indicator of the robustness of a multiprocessor system in presence of failing processors. The g-extra conditional diagnosability and the t/m-diagnosability are two important diagnostic strategies at system-level that can significantly enhance the system's self-diagnosing capability. The g-extra conditional diagnosability is defined under the assumption that every component of the system removing a set of faulty vertices has more than g vertices. The t/m-diagnosis strategy can detect up to t faulty processors which might include at most m misdiagnosed processors, where m is typically a small integer number. In this paper, we analyze the combinatorial properties and fault tolerant ability for an (n, k)-arrangement graph, denoted by A n,k , a well-known interconnection network proposed for multiprocessor systems. We first establish that the A n,k 's one-extra connectivity is (2k - 1) (n - k) - 1 (k ≥ 3, n ≥ k + 2), two-extra connectivity is (3k - 2)(n - k) - 3 (k ≥ 4, n ≥ k + 2), and three-extra connectivity is (4k - 4)(n - k) - 4 ( k ≥ 4, n ≥ k + 2 or k ≥ 3, n ≥ k + 3), respectively. And then, we address the g-extra conditional diagnosability of A n,k under the PMC model for 1 ≤ g ≤ 3. Finally, we determine that the (n, k)-arrangement graph A n,k is [(2k - 1)(n - k) - 1]/1-diagnosable (k ≥ 4, n ≥ k + 2), [(3k - 2)(n - k) - 3]/2-diagnosable (k ≥ 4, n ≥ k + 2), and [(4k - 4)(n - k) - 4]/3-diagnosable (k ≥ 4, n ≥ k + 3) under the PMC model, respectively.</description><subject>Arrangement graphs</subject><subject>Combinatorial analysis</subject><subject>Diagnostic systems</subject><subject>extra conditional diagnosability</subject><subject>extra connectivity</subject><subject>Fault tolerance</subject><subject>Fault tolerant systems</subject><subject>Graphs</subject><subject>Hypercubes</subject><subject>Multiprocessing systems</subject><subject>Multiprocessor</subject><subject>PMC model</subject><subject>Processors</subject><subject>Program processors</subject><subject>Robustness</subject><subject>Strategy</subject><subject>system-level diagnosis</subject><subject>t/m-diagnosability</subject><subject>Testing</subject><issn>0018-9529</issn><issn>1558-1721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpVkM1LAzEQxYMoWKtnD1726MFtk2zSJMdSaxUKQlnPYTabbSP7UZNU7H_v1hZFGBjm8XsD7yF0S_CIEKzG-WpEMZmMKBeYc3WGBoRzmRJByTkaYExkqjhVl-gqhPf-ZEzJAaryjU3mX9FDMuva1proPl3cP_xppYuua6FOHh2s2y5A4eofAtoyieMm_a8nXZVMvYd2bRvbxmThYbsJ1-iigjrYm9MeoreneT57Tpevi5fZdJkaqlhMCTWlqpilVUWBWWVEISTr42EmikKC4QClmICxQnBFcNaPLEyZEQKQEZEN0f3x79Z3Hzsbom5cMLauobXdLmgiOc8mTJKsR8dH1PguBG8rvfWuAb_XBOtDozpf6UOj-tRo77g7Opy19pcWTEpKefYN4ztyeg</recordid><startdate>201609</startdate><enddate>201609</enddate><creator>Xu, Li</creator><creator>Lin, Limei</creator><creator>Zhou, Shuming</creator><creator>Hsieh, Sun-Yuan</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>201609</creationdate><title>The Extra Connectivity, Extra Conditional Diagnosability, and t/m-Diagnosability of Arrangement Graphs</title><author>Xu, Li ; Lin, Limei ; Zhou, Shuming ; Hsieh, Sun-Yuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-12cd9f4e2ff2a4e9c7b784110047bb8ac5aad76ace77591031038bcd311aa3173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Arrangement graphs</topic><topic>Combinatorial analysis</topic><topic>Diagnostic systems</topic><topic>extra conditional diagnosability</topic><topic>extra connectivity</topic><topic>Fault tolerance</topic><topic>Fault tolerant systems</topic><topic>Graphs</topic><topic>Hypercubes</topic><topic>Multiprocessing systems</topic><topic>Multiprocessor</topic><topic>PMC model</topic><topic>Processors</topic><topic>Program processors</topic><topic>Robustness</topic><topic>Strategy</topic><topic>system-level diagnosis</topic><topic>t/m-diagnosability</topic><topic>Testing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Li</creatorcontrib><creatorcontrib>Lin, Limei</creatorcontrib><creatorcontrib>Zhou, Shuming</creatorcontrib><creatorcontrib>Hsieh, Sun-Yuan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on reliability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xu, Li</au><au>Lin, Limei</au><au>Zhou, Shuming</au><au>Hsieh, Sun-Yuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Extra Connectivity, Extra Conditional Diagnosability, and t/m-Diagnosability of Arrangement Graphs</atitle><jtitle>IEEE transactions on reliability</jtitle><stitle>TR</stitle><date>2016-09</date><risdate>2016</risdate><volume>65</volume><issue>3</issue><spage>1248</spage><epage>1262</epage><pages>1248-1262</pages><issn>0018-9529</issn><eissn>1558-1721</eissn><coden>IERQAD</coden><abstract>Extra connectivity is an important indicator of the robustness of a multiprocessor system in presence of failing processors. The g-extra conditional diagnosability and the t/m-diagnosability are two important diagnostic strategies at system-level that can significantly enhance the system's self-diagnosing capability. The g-extra conditional diagnosability is defined under the assumption that every component of the system removing a set of faulty vertices has more than g vertices. The t/m-diagnosis strategy can detect up to t faulty processors which might include at most m misdiagnosed processors, where m is typically a small integer number. In this paper, we analyze the combinatorial properties and fault tolerant ability for an (n, k)-arrangement graph, denoted by A n,k , a well-known interconnection network proposed for multiprocessor systems. We first establish that the A n,k 's one-extra connectivity is (2k - 1) (n - k) - 1 (k ≥ 3, n ≥ k + 2), two-extra connectivity is (3k - 2)(n - k) - 3 (k ≥ 4, n ≥ k + 2), and three-extra connectivity is (4k - 4)(n - k) - 4 ( k ≥ 4, n ≥ k + 2 or k ≥ 3, n ≥ k + 3), respectively. And then, we address the g-extra conditional diagnosability of A n,k under the PMC model for 1 ≤ g ≤ 3. Finally, we determine that the (n, k)-arrangement graph A n,k is [(2k - 1)(n - k) - 1]/1-diagnosable (k ≥ 4, n ≥ k + 2), [(3k - 2)(n - k) - 3]/2-diagnosable (k ≥ 4, n ≥ k + 2), and [(4k - 4)(n - k) - 4]/3-diagnosable (k ≥ 4, n ≥ k + 3) under the PMC model, respectively.</abstract><pub>IEEE</pub><doi>10.1109/TR.2016.2570559</doi><tpages>15</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9529
ispartof IEEE transactions on reliability, 2016-09, Vol.65 (3), p.1248-1262
issn 0018-9529
1558-1721
language eng
recordid cdi_proquest_miscellaneous_1855364813
source IEEE Electronic Library (IEL)
subjects Arrangement graphs
Combinatorial analysis
Diagnostic systems
extra conditional diagnosability
extra connectivity
Fault tolerance
Fault tolerant systems
Graphs
Hypercubes
Multiprocessing systems
Multiprocessor
PMC model
Processors
Program processors
Robustness
Strategy
system-level diagnosis
t/m-diagnosability
Testing
title The Extra Connectivity, Extra Conditional Diagnosability, and t/m-Diagnosability of Arrangement Graphs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T13%3A35%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Extra%20Connectivity,%20Extra%20Conditional%20Diagnosability,%20and%20t/m-Diagnosability%20of%20Arrangement%20Graphs&rft.jtitle=IEEE%20transactions%20on%20reliability&rft.au=Xu,%20Li&rft.date=2016-09&rft.volume=65&rft.issue=3&rft.spage=1248&rft.epage=1262&rft.pages=1248-1262&rft.issn=0018-9529&rft.eissn=1558-1721&rft.coden=IERQAD&rft_id=info:doi/10.1109/TR.2016.2570559&rft_dat=%3Cproquest_RIE%3E1855364813%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1855364813&rft_id=info:pmid/&rft_ieee_id=7488225&rfr_iscdi=true