The Extra Connectivity, Extra Conditional Diagnosability, and t/m-Diagnosability of Arrangement Graphs
Extra connectivity is an important indicator of the robustness of a multiprocessor system in presence of failing processors. The g-extra conditional diagnosability and the t/m-diagnosability are two important diagnostic strategies at system-level that can significantly enhance the system's self...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on reliability 2016-09, Vol.65 (3), p.1248-1262 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1262 |
---|---|
container_issue | 3 |
container_start_page | 1248 |
container_title | IEEE transactions on reliability |
container_volume | 65 |
creator | Xu, Li Lin, Limei Zhou, Shuming Hsieh, Sun-Yuan |
description | Extra connectivity is an important indicator of the robustness of a multiprocessor system in presence of failing processors. The g-extra conditional diagnosability and the t/m-diagnosability are two important diagnostic strategies at system-level that can significantly enhance the system's self-diagnosing capability. The g-extra conditional diagnosability is defined under the assumption that every component of the system removing a set of faulty vertices has more than g vertices. The t/m-diagnosis strategy can detect up to t faulty processors which might include at most m misdiagnosed processors, where m is typically a small integer number. In this paper, we analyze the combinatorial properties and fault tolerant ability for an (n, k)-arrangement graph, denoted by A n,k , a well-known interconnection network proposed for multiprocessor systems. We first establish that the A n,k 's one-extra connectivity is (2k - 1) (n - k) - 1 (k ≥ 3, n ≥ k + 2), two-extra connectivity is (3k - 2)(n - k) - 3 (k ≥ 4, n ≥ k + 2), and three-extra connectivity is (4k - 4)(n - k) - 4 ( k ≥ 4, n ≥ k + 2 or k ≥ 3, n ≥ k + 3), respectively. And then, we address the g-extra conditional diagnosability of A n,k under the PMC model for 1 ≤ g ≤ 3. Finally, we determine that the (n, k)-arrangement graph A n,k is [(2k - 1)(n - k) - 1]/1-diagnosable (k ≥ 4, n ≥ k + 2), [(3k - 2)(n - k) - 3]/2-diagnosable (k ≥ 4, n ≥ k + 2), and [(4k - 4)(n - k) - 4]/3-diagnosable (k ≥ 4, n ≥ k + 3) under the PMC model, respectively. |
doi_str_mv | 10.1109/TR.2016.2570559 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1855364813</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7488225</ieee_id><sourcerecordid>1855364813</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-12cd9f4e2ff2a4e9c7b784110047bb8ac5aad76ace77591031038bcd311aa3173</originalsourceid><addsrcrecordid>eNpVkM1LAzEQxYMoWKtnD1726MFtk2zSJMdSaxUKQlnPYTabbSP7UZNU7H_v1hZFGBjm8XsD7yF0S_CIEKzG-WpEMZmMKBeYc3WGBoRzmRJByTkaYExkqjhVl-gqhPf-ZEzJAaryjU3mX9FDMuva1proPl3cP_xppYuua6FOHh2s2y5A4eofAtoyieMm_a8nXZVMvYd2bRvbxmThYbsJ1-iigjrYm9MeoreneT57Tpevi5fZdJkaqlhMCTWlqpilVUWBWWVEISTr42EmikKC4QClmICxQnBFcNaPLEyZEQKQEZEN0f3x79Z3Hzsbom5cMLauobXdLmgiOc8mTJKsR8dH1PguBG8rvfWuAb_XBOtDozpf6UOj-tRo77g7Opy19pcWTEpKefYN4ztyeg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1855364813</pqid></control><display><type>article</type><title>The Extra Connectivity, Extra Conditional Diagnosability, and t/m-Diagnosability of Arrangement Graphs</title><source>IEEE Electronic Library (IEL)</source><creator>Xu, Li ; Lin, Limei ; Zhou, Shuming ; Hsieh, Sun-Yuan</creator><creatorcontrib>Xu, Li ; Lin, Limei ; Zhou, Shuming ; Hsieh, Sun-Yuan</creatorcontrib><description>Extra connectivity is an important indicator of the robustness of a multiprocessor system in presence of failing processors. The g-extra conditional diagnosability and the t/m-diagnosability are two important diagnostic strategies at system-level that can significantly enhance the system's self-diagnosing capability. The g-extra conditional diagnosability is defined under the assumption that every component of the system removing a set of faulty vertices has more than g vertices. The t/m-diagnosis strategy can detect up to t faulty processors which might include at most m misdiagnosed processors, where m is typically a small integer number. In this paper, we analyze the combinatorial properties and fault tolerant ability for an (n, k)-arrangement graph, denoted by A n,k , a well-known interconnection network proposed for multiprocessor systems. We first establish that the A n,k 's one-extra connectivity is (2k - 1) (n - k) - 1 (k ≥ 3, n ≥ k + 2), two-extra connectivity is (3k - 2)(n - k) - 3 (k ≥ 4, n ≥ k + 2), and three-extra connectivity is (4k - 4)(n - k) - 4 ( k ≥ 4, n ≥ k + 2 or k ≥ 3, n ≥ k + 3), respectively. And then, we address the g-extra conditional diagnosability of A n,k under the PMC model for 1 ≤ g ≤ 3. Finally, we determine that the (n, k)-arrangement graph A n,k is [(2k - 1)(n - k) - 1]/1-diagnosable (k ≥ 4, n ≥ k + 2), [(3k - 2)(n - k) - 3]/2-diagnosable (k ≥ 4, n ≥ k + 2), and [(4k - 4)(n - k) - 4]/3-diagnosable (k ≥ 4, n ≥ k + 3) under the PMC model, respectively.</description><identifier>ISSN: 0018-9529</identifier><identifier>EISSN: 1558-1721</identifier><identifier>DOI: 10.1109/TR.2016.2570559</identifier><identifier>CODEN: IERQAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Arrangement graphs ; Combinatorial analysis ; Diagnostic systems ; extra conditional diagnosability ; extra connectivity ; Fault tolerance ; Fault tolerant systems ; Graphs ; Hypercubes ; Multiprocessing systems ; Multiprocessor ; PMC model ; Processors ; Program processors ; Robustness ; Strategy ; system-level diagnosis ; t/m-diagnosability ; Testing</subject><ispartof>IEEE transactions on reliability, 2016-09, Vol.65 (3), p.1248-1262</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-12cd9f4e2ff2a4e9c7b784110047bb8ac5aad76ace77591031038bcd311aa3173</citedby><cites>FETCH-LOGICAL-c294t-12cd9f4e2ff2a4e9c7b784110047bb8ac5aad76ace77591031038bcd311aa3173</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7488225$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7488225$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xu, Li</creatorcontrib><creatorcontrib>Lin, Limei</creatorcontrib><creatorcontrib>Zhou, Shuming</creatorcontrib><creatorcontrib>Hsieh, Sun-Yuan</creatorcontrib><title>The Extra Connectivity, Extra Conditional Diagnosability, and t/m-Diagnosability of Arrangement Graphs</title><title>IEEE transactions on reliability</title><addtitle>TR</addtitle><description>Extra connectivity is an important indicator of the robustness of a multiprocessor system in presence of failing processors. The g-extra conditional diagnosability and the t/m-diagnosability are two important diagnostic strategies at system-level that can significantly enhance the system's self-diagnosing capability. The g-extra conditional diagnosability is defined under the assumption that every component of the system removing a set of faulty vertices has more than g vertices. The t/m-diagnosis strategy can detect up to t faulty processors which might include at most m misdiagnosed processors, where m is typically a small integer number. In this paper, we analyze the combinatorial properties and fault tolerant ability for an (n, k)-arrangement graph, denoted by A n,k , a well-known interconnection network proposed for multiprocessor systems. We first establish that the A n,k 's one-extra connectivity is (2k - 1) (n - k) - 1 (k ≥ 3, n ≥ k + 2), two-extra connectivity is (3k - 2)(n - k) - 3 (k ≥ 4, n ≥ k + 2), and three-extra connectivity is (4k - 4)(n - k) - 4 ( k ≥ 4, n ≥ k + 2 or k ≥ 3, n ≥ k + 3), respectively. And then, we address the g-extra conditional diagnosability of A n,k under the PMC model for 1 ≤ g ≤ 3. Finally, we determine that the (n, k)-arrangement graph A n,k is [(2k - 1)(n - k) - 1]/1-diagnosable (k ≥ 4, n ≥ k + 2), [(3k - 2)(n - k) - 3]/2-diagnosable (k ≥ 4, n ≥ k + 2), and [(4k - 4)(n - k) - 4]/3-diagnosable (k ≥ 4, n ≥ k + 3) under the PMC model, respectively.</description><subject>Arrangement graphs</subject><subject>Combinatorial analysis</subject><subject>Diagnostic systems</subject><subject>extra conditional diagnosability</subject><subject>extra connectivity</subject><subject>Fault tolerance</subject><subject>Fault tolerant systems</subject><subject>Graphs</subject><subject>Hypercubes</subject><subject>Multiprocessing systems</subject><subject>Multiprocessor</subject><subject>PMC model</subject><subject>Processors</subject><subject>Program processors</subject><subject>Robustness</subject><subject>Strategy</subject><subject>system-level diagnosis</subject><subject>t/m-diagnosability</subject><subject>Testing</subject><issn>0018-9529</issn><issn>1558-1721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpVkM1LAzEQxYMoWKtnD1726MFtk2zSJMdSaxUKQlnPYTabbSP7UZNU7H_v1hZFGBjm8XsD7yF0S_CIEKzG-WpEMZmMKBeYc3WGBoRzmRJByTkaYExkqjhVl-gqhPf-ZEzJAaryjU3mX9FDMuva1proPl3cP_xppYuua6FOHh2s2y5A4eofAtoyieMm_a8nXZVMvYd2bRvbxmThYbsJ1-iigjrYm9MeoreneT57Tpevi5fZdJkaqlhMCTWlqpilVUWBWWVEISTr42EmikKC4QClmICxQnBFcNaPLEyZEQKQEZEN0f3x79Z3Hzsbom5cMLauobXdLmgiOc8mTJKsR8dH1PguBG8rvfWuAb_XBOtDozpf6UOj-tRo77g7Opy19pcWTEpKefYN4ztyeg</recordid><startdate>201609</startdate><enddate>201609</enddate><creator>Xu, Li</creator><creator>Lin, Limei</creator><creator>Zhou, Shuming</creator><creator>Hsieh, Sun-Yuan</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>201609</creationdate><title>The Extra Connectivity, Extra Conditional Diagnosability, and t/m-Diagnosability of Arrangement Graphs</title><author>Xu, Li ; Lin, Limei ; Zhou, Shuming ; Hsieh, Sun-Yuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-12cd9f4e2ff2a4e9c7b784110047bb8ac5aad76ace77591031038bcd311aa3173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Arrangement graphs</topic><topic>Combinatorial analysis</topic><topic>Diagnostic systems</topic><topic>extra conditional diagnosability</topic><topic>extra connectivity</topic><topic>Fault tolerance</topic><topic>Fault tolerant systems</topic><topic>Graphs</topic><topic>Hypercubes</topic><topic>Multiprocessing systems</topic><topic>Multiprocessor</topic><topic>PMC model</topic><topic>Processors</topic><topic>Program processors</topic><topic>Robustness</topic><topic>Strategy</topic><topic>system-level diagnosis</topic><topic>t/m-diagnosability</topic><topic>Testing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Li</creatorcontrib><creatorcontrib>Lin, Limei</creatorcontrib><creatorcontrib>Zhou, Shuming</creatorcontrib><creatorcontrib>Hsieh, Sun-Yuan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on reliability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xu, Li</au><au>Lin, Limei</au><au>Zhou, Shuming</au><au>Hsieh, Sun-Yuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Extra Connectivity, Extra Conditional Diagnosability, and t/m-Diagnosability of Arrangement Graphs</atitle><jtitle>IEEE transactions on reliability</jtitle><stitle>TR</stitle><date>2016-09</date><risdate>2016</risdate><volume>65</volume><issue>3</issue><spage>1248</spage><epage>1262</epage><pages>1248-1262</pages><issn>0018-9529</issn><eissn>1558-1721</eissn><coden>IERQAD</coden><abstract>Extra connectivity is an important indicator of the robustness of a multiprocessor system in presence of failing processors. The g-extra conditional diagnosability and the t/m-diagnosability are two important diagnostic strategies at system-level that can significantly enhance the system's self-diagnosing capability. The g-extra conditional diagnosability is defined under the assumption that every component of the system removing a set of faulty vertices has more than g vertices. The t/m-diagnosis strategy can detect up to t faulty processors which might include at most m misdiagnosed processors, where m is typically a small integer number. In this paper, we analyze the combinatorial properties and fault tolerant ability for an (n, k)-arrangement graph, denoted by A n,k , a well-known interconnection network proposed for multiprocessor systems. We first establish that the A n,k 's one-extra connectivity is (2k - 1) (n - k) - 1 (k ≥ 3, n ≥ k + 2), two-extra connectivity is (3k - 2)(n - k) - 3 (k ≥ 4, n ≥ k + 2), and three-extra connectivity is (4k - 4)(n - k) - 4 ( k ≥ 4, n ≥ k + 2 or k ≥ 3, n ≥ k + 3), respectively. And then, we address the g-extra conditional diagnosability of A n,k under the PMC model for 1 ≤ g ≤ 3. Finally, we determine that the (n, k)-arrangement graph A n,k is [(2k - 1)(n - k) - 1]/1-diagnosable (k ≥ 4, n ≥ k + 2), [(3k - 2)(n - k) - 3]/2-diagnosable (k ≥ 4, n ≥ k + 2), and [(4k - 4)(n - k) - 4]/3-diagnosable (k ≥ 4, n ≥ k + 3) under the PMC model, respectively.</abstract><pub>IEEE</pub><doi>10.1109/TR.2016.2570559</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9529 |
ispartof | IEEE transactions on reliability, 2016-09, Vol.65 (3), p.1248-1262 |
issn | 0018-9529 1558-1721 |
language | eng |
recordid | cdi_proquest_miscellaneous_1855364813 |
source | IEEE Electronic Library (IEL) |
subjects | Arrangement graphs Combinatorial analysis Diagnostic systems extra conditional diagnosability extra connectivity Fault tolerance Fault tolerant systems Graphs Hypercubes Multiprocessing systems Multiprocessor PMC model Processors Program processors Robustness Strategy system-level diagnosis t/m-diagnosability Testing |
title | The Extra Connectivity, Extra Conditional Diagnosability, and t/m-Diagnosability of Arrangement Graphs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T13%3A35%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Extra%20Connectivity,%20Extra%20Conditional%20Diagnosability,%20and%20t/m-Diagnosability%20of%20Arrangement%20Graphs&rft.jtitle=IEEE%20transactions%20on%20reliability&rft.au=Xu,%20Li&rft.date=2016-09&rft.volume=65&rft.issue=3&rft.spage=1248&rft.epage=1262&rft.pages=1248-1262&rft.issn=0018-9529&rft.eissn=1558-1721&rft.coden=IERQAD&rft_id=info:doi/10.1109/TR.2016.2570559&rft_dat=%3Cproquest_RIE%3E1855364813%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1855364813&rft_id=info:pmid/&rft_ieee_id=7488225&rfr_iscdi=true |