Gene transcription repression in Clostridium beijerinckii using CRISPR-dCas9
ABSTRACT CRISPR‐Cas9 has been explored as a powerful tool for genome engineering for many organisms. Meanwhile, dCas9 which lacks endonuclease activity but can still bind to target loci has been engineered for efficient gene transcription repression. Clostridium beijerinckii, an industrially signifi...
Gespeichert in:
Veröffentlicht in: | Biotechnology and bioengineering 2016-12, Vol.113 (12), p.2739-2743 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2743 |
---|---|
container_issue | 12 |
container_start_page | 2739 |
container_title | Biotechnology and bioengineering |
container_volume | 113 |
creator | Wang, Yi Zhang, Zhong-Tian Seo, Seung-Oh Lynn, Patrick Lu, Ting Jin, Yong-Su Blaschek, Hans P. |
description | ABSTRACT
CRISPR‐Cas9 has been explored as a powerful tool for genome engineering for many organisms. Meanwhile, dCas9 which lacks endonuclease activity but can still bind to target loci has been engineered for efficient gene transcription repression. Clostridium beijerinckii, an industrially significant species capable of biosolvent production, is generally difficult to metabolically engineer. Recently, we reported our work in developing customized CRISPR‐Cas9 system for genome engineering in C. beijerinckii. However, in many cases, gene expression repression (rather than actual DNA mutation) is more desirable for various biotechnological applications. Here, we further demonstrated gene transcription repression in C. beijerinckii using CRISPR‐dCas9. A small RNA promoter was employed to drive the expression of the single chimeric guide RNA targeting on the promoter region of amylase gene, while a constitutive thiolase promoter was used to drive Streptococcus pyogenes dCas9 expression. The growth assay on starch agar plates showed qualitatively significant repression of amylase activity in C. beijerinckii transformant with CRISPR‐dCas9 compared to the control strain. Further amylase activity quantification demonstrated consistent repression (65–97% through the fermentation process) on the activity in the transformant with CRISPR‐dCas9 versus in the control. Our results provided essential references for engineering CRISPR‐dCas9 as an effective tool for tunable gene transcription repression in diverse microorganisms. Biotechnol. Bioeng. 2016;113: 2739–2743. © 2016 Wiley Periodicals, Inc.
The CRISPR‐dCas9 mediated gene transcription regulation led to efficient repression on amylase gene in C. beijerinckii demonstrated by the amylolytic activity assay with starch agar plate. Left: the dCas9 repressed culture. Right: the control culture. |
doi_str_mv | 10.1002/bit.26020 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1855361980</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4229919811</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5600-6c65911c99576271bfa130bd31ad5bbfa82e6315a1ca36ba1bddae49650909203</originalsourceid><addsrcrecordid>eNqNkU1P4zAQhi0Egi5w2D-wisSFPQRm7NqOjxCxpaJ8qID2aDmJi1zSpNiJFv49LgUOKyFxmhnpeR9p9BLyE-EIAehx4bojKoDCBhkgKJkCVbBJBgAgUsYV3SE_QpjHU2ZCbJMdKukQJGYDMhnZxiadN00ovVt2rm0Sb5fehrBaXZPkdRs67yrXL5LCurn1rikfnUv64JqHJJ-Ob2-maZWboPbI1szUwe6_z11y_-fsLj9PJ9ejcX4ySUsuAFJRCq4QS6W4FFRiMTPIoKgYmooX8cqoFQy5wdIwURgsqsrYoRIcFCgKbJccrr1L3z71NnR64UJp69o0tu2DxoxzJlBl30GZpIoOGf0GSoVQmEmM6MF_6LztfRN_XgmjjwmZRer3mip9G4K3M730bmH8i0bQq-J0LE6_FRfZX-_GvljY6pP8aCoCx2vgn6vty9cmfTq--1Cm64QLnX3-TBj_qIVkkuu_VyN9MTlX01F2qXP2Cvugrkc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1832923678</pqid></control><display><type>article</type><title>Gene transcription repression in Clostridium beijerinckii using CRISPR-dCas9</title><source>MEDLINE</source><source>Wiley Online Library</source><creator>Wang, Yi ; Zhang, Zhong-Tian ; Seo, Seung-Oh ; Lynn, Patrick ; Lu, Ting ; Jin, Yong-Su ; Blaschek, Hans P.</creator><creatorcontrib>Wang, Yi ; Zhang, Zhong-Tian ; Seo, Seung-Oh ; Lynn, Patrick ; Lu, Ting ; Jin, Yong-Su ; Blaschek, Hans P.</creatorcontrib><description>ABSTRACT
CRISPR‐Cas9 has been explored as a powerful tool for genome engineering for many organisms. Meanwhile, dCas9 which lacks endonuclease activity but can still bind to target loci has been engineered for efficient gene transcription repression. Clostridium beijerinckii, an industrially significant species capable of biosolvent production, is generally difficult to metabolically engineer. Recently, we reported our work in developing customized CRISPR‐Cas9 system for genome engineering in C. beijerinckii. However, in many cases, gene expression repression (rather than actual DNA mutation) is more desirable for various biotechnological applications. Here, we further demonstrated gene transcription repression in C. beijerinckii using CRISPR‐dCas9. A small RNA promoter was employed to drive the expression of the single chimeric guide RNA targeting on the promoter region of amylase gene, while a constitutive thiolase promoter was used to drive Streptococcus pyogenes dCas9 expression. The growth assay on starch agar plates showed qualitatively significant repression of amylase activity in C. beijerinckii transformant with CRISPR‐dCas9 compared to the control strain. Further amylase activity quantification demonstrated consistent repression (65–97% through the fermentation process) on the activity in the transformant with CRISPR‐dCas9 versus in the control. Our results provided essential references for engineering CRISPR‐dCas9 as an effective tool for tunable gene transcription repression in diverse microorganisms. Biotechnol. Bioeng. 2016;113: 2739–2743. © 2016 Wiley Periodicals, Inc.
The CRISPR‐dCas9 mediated gene transcription regulation led to efficient repression on amylase gene in C. beijerinckii demonstrated by the amylolytic activity assay with starch agar plate. Left: the dCas9 repressed culture. Right: the control culture.</description><identifier>ISSN: 0006-3592</identifier><identifier>EISSN: 1097-0290</identifier><identifier>DOI: 10.1002/bit.26020</identifier><identifier>PMID: 27240718</identifier><identifier>CODEN: BIBIAU</identifier><language>eng</language><publisher>United States: Blackwell Publishing Ltd</publisher><subject>Agar ; Amylase ; amylase activity ; Amylases - biosynthesis ; Amylases - genetics ; Bacteriology ; Bioengineering ; Biotechnology ; Clostridium ; Clostridium beijerinckii ; Clostridium beijerinckii - genetics ; Clustered Regularly Interspaced Short Palindromic Repeats - genetics ; CRISPR-Associated Proteins - genetics ; CRISPR-dCas9 ; CRISPRi ; Culture ; Down-Regulation - genetics ; Epigenetic Repression - genetics ; Fermentation ; Gene expression ; Gene Expression Regulation, Bacterial - genetics ; gene transcription repression ; Genes ; genome engineering ; Genomics ; Microbiology ; Microorganisms ; Ribonucleic acids ; Starches ; Streptococcus pyogenes ; synthetic biology ; Transcription, Genetic - genetics ; Transcriptional Activation - genetics</subject><ispartof>Biotechnology and bioengineering, 2016-12, Vol.113 (12), p.2739-2743</ispartof><rights>2016 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5600-6c65911c99576271bfa130bd31ad5bbfa82e6315a1ca36ba1bddae49650909203</citedby><cites>FETCH-LOGICAL-c5600-6c65911c99576271bfa130bd31ad5bbfa82e6315a1ca36ba1bddae49650909203</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fbit.26020$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fbit.26020$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27240718$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Yi</creatorcontrib><creatorcontrib>Zhang, Zhong-Tian</creatorcontrib><creatorcontrib>Seo, Seung-Oh</creatorcontrib><creatorcontrib>Lynn, Patrick</creatorcontrib><creatorcontrib>Lu, Ting</creatorcontrib><creatorcontrib>Jin, Yong-Su</creatorcontrib><creatorcontrib>Blaschek, Hans P.</creatorcontrib><title>Gene transcription repression in Clostridium beijerinckii using CRISPR-dCas9</title><title>Biotechnology and bioengineering</title><addtitle>Biotechnol. Bioeng</addtitle><description>ABSTRACT
CRISPR‐Cas9 has been explored as a powerful tool for genome engineering for many organisms. Meanwhile, dCas9 which lacks endonuclease activity but can still bind to target loci has been engineered for efficient gene transcription repression. Clostridium beijerinckii, an industrially significant species capable of biosolvent production, is generally difficult to metabolically engineer. Recently, we reported our work in developing customized CRISPR‐Cas9 system for genome engineering in C. beijerinckii. However, in many cases, gene expression repression (rather than actual DNA mutation) is more desirable for various biotechnological applications. Here, we further demonstrated gene transcription repression in C. beijerinckii using CRISPR‐dCas9. A small RNA promoter was employed to drive the expression of the single chimeric guide RNA targeting on the promoter region of amylase gene, while a constitutive thiolase promoter was used to drive Streptococcus pyogenes dCas9 expression. The growth assay on starch agar plates showed qualitatively significant repression of amylase activity in C. beijerinckii transformant with CRISPR‐dCas9 compared to the control strain. Further amylase activity quantification demonstrated consistent repression (65–97% through the fermentation process) on the activity in the transformant with CRISPR‐dCas9 versus in the control. Our results provided essential references for engineering CRISPR‐dCas9 as an effective tool for tunable gene transcription repression in diverse microorganisms. Biotechnol. Bioeng. 2016;113: 2739–2743. © 2016 Wiley Periodicals, Inc.
The CRISPR‐dCas9 mediated gene transcription regulation led to efficient repression on amylase gene in C. beijerinckii demonstrated by the amylolytic activity assay with starch agar plate. Left: the dCas9 repressed culture. Right: the control culture.</description><subject>Agar</subject><subject>Amylase</subject><subject>amylase activity</subject><subject>Amylases - biosynthesis</subject><subject>Amylases - genetics</subject><subject>Bacteriology</subject><subject>Bioengineering</subject><subject>Biotechnology</subject><subject>Clostridium</subject><subject>Clostridium beijerinckii</subject><subject>Clostridium beijerinckii - genetics</subject><subject>Clustered Regularly Interspaced Short Palindromic Repeats - genetics</subject><subject>CRISPR-Associated Proteins - genetics</subject><subject>CRISPR-dCas9</subject><subject>CRISPRi</subject><subject>Culture</subject><subject>Down-Regulation - genetics</subject><subject>Epigenetic Repression - genetics</subject><subject>Fermentation</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Bacterial - genetics</subject><subject>gene transcription repression</subject><subject>Genes</subject><subject>genome engineering</subject><subject>Genomics</subject><subject>Microbiology</subject><subject>Microorganisms</subject><subject>Ribonucleic acids</subject><subject>Starches</subject><subject>Streptococcus pyogenes</subject><subject>synthetic biology</subject><subject>Transcription, Genetic - genetics</subject><subject>Transcriptional Activation - genetics</subject><issn>0006-3592</issn><issn>1097-0290</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkU1P4zAQhi0Egi5w2D-wisSFPQRm7NqOjxCxpaJ8qID2aDmJi1zSpNiJFv49LgUOKyFxmhnpeR9p9BLyE-EIAehx4bojKoDCBhkgKJkCVbBJBgAgUsYV3SE_QpjHU2ZCbJMdKukQJGYDMhnZxiadN00ovVt2rm0Sb5fehrBaXZPkdRs67yrXL5LCurn1rikfnUv64JqHJJ-Ob2-maZWboPbI1szUwe6_z11y_-fsLj9PJ9ejcX4ySUsuAFJRCq4QS6W4FFRiMTPIoKgYmooX8cqoFQy5wdIwURgsqsrYoRIcFCgKbJccrr1L3z71NnR64UJp69o0tu2DxoxzJlBl30GZpIoOGf0GSoVQmEmM6MF_6LztfRN_XgmjjwmZRer3mip9G4K3M730bmH8i0bQq-J0LE6_FRfZX-_GvljY6pP8aCoCx2vgn6vty9cmfTq--1Cm64QLnX3-TBj_qIVkkuu_VyN9MTlX01F2qXP2Cvugrkc</recordid><startdate>201612</startdate><enddate>201612</enddate><creator>Wang, Yi</creator><creator>Zhang, Zhong-Tian</creator><creator>Seo, Seung-Oh</creator><creator>Lynn, Patrick</creator><creator>Lu, Ting</creator><creator>Jin, Yong-Su</creator><creator>Blaschek, Hans P.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><scope>7QL</scope></search><sort><creationdate>201612</creationdate><title>Gene transcription repression in Clostridium beijerinckii using CRISPR-dCas9</title><author>Wang, Yi ; Zhang, Zhong-Tian ; Seo, Seung-Oh ; Lynn, Patrick ; Lu, Ting ; Jin, Yong-Su ; Blaschek, Hans P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5600-6c65911c99576271bfa130bd31ad5bbfa82e6315a1ca36ba1bddae49650909203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Agar</topic><topic>Amylase</topic><topic>amylase activity</topic><topic>Amylases - biosynthesis</topic><topic>Amylases - genetics</topic><topic>Bacteriology</topic><topic>Bioengineering</topic><topic>Biotechnology</topic><topic>Clostridium</topic><topic>Clostridium beijerinckii</topic><topic>Clostridium beijerinckii - genetics</topic><topic>Clustered Regularly Interspaced Short Palindromic Repeats - genetics</topic><topic>CRISPR-Associated Proteins - genetics</topic><topic>CRISPR-dCas9</topic><topic>CRISPRi</topic><topic>Culture</topic><topic>Down-Regulation - genetics</topic><topic>Epigenetic Repression - genetics</topic><topic>Fermentation</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Bacterial - genetics</topic><topic>gene transcription repression</topic><topic>Genes</topic><topic>genome engineering</topic><topic>Genomics</topic><topic>Microbiology</topic><topic>Microorganisms</topic><topic>Ribonucleic acids</topic><topic>Starches</topic><topic>Streptococcus pyogenes</topic><topic>synthetic biology</topic><topic>Transcription, Genetic - genetics</topic><topic>Transcriptional Activation - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yi</creatorcontrib><creatorcontrib>Zhang, Zhong-Tian</creatorcontrib><creatorcontrib>Seo, Seung-Oh</creatorcontrib><creatorcontrib>Lynn, Patrick</creatorcontrib><creatorcontrib>Lu, Ting</creatorcontrib><creatorcontrib>Jin, Yong-Su</creatorcontrib><creatorcontrib>Blaschek, Hans P.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><jtitle>Biotechnology and bioengineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yi</au><au>Zhang, Zhong-Tian</au><au>Seo, Seung-Oh</au><au>Lynn, Patrick</au><au>Lu, Ting</au><au>Jin, Yong-Su</au><au>Blaschek, Hans P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gene transcription repression in Clostridium beijerinckii using CRISPR-dCas9</atitle><jtitle>Biotechnology and bioengineering</jtitle><addtitle>Biotechnol. Bioeng</addtitle><date>2016-12</date><risdate>2016</risdate><volume>113</volume><issue>12</issue><spage>2739</spage><epage>2743</epage><pages>2739-2743</pages><issn>0006-3592</issn><eissn>1097-0290</eissn><coden>BIBIAU</coden><abstract>ABSTRACT
CRISPR‐Cas9 has been explored as a powerful tool for genome engineering for many organisms. Meanwhile, dCas9 which lacks endonuclease activity but can still bind to target loci has been engineered for efficient gene transcription repression. Clostridium beijerinckii, an industrially significant species capable of biosolvent production, is generally difficult to metabolically engineer. Recently, we reported our work in developing customized CRISPR‐Cas9 system for genome engineering in C. beijerinckii. However, in many cases, gene expression repression (rather than actual DNA mutation) is more desirable for various biotechnological applications. Here, we further demonstrated gene transcription repression in C. beijerinckii using CRISPR‐dCas9. A small RNA promoter was employed to drive the expression of the single chimeric guide RNA targeting on the promoter region of amylase gene, while a constitutive thiolase promoter was used to drive Streptococcus pyogenes dCas9 expression. The growth assay on starch agar plates showed qualitatively significant repression of amylase activity in C. beijerinckii transformant with CRISPR‐dCas9 compared to the control strain. Further amylase activity quantification demonstrated consistent repression (65–97% through the fermentation process) on the activity in the transformant with CRISPR‐dCas9 versus in the control. Our results provided essential references for engineering CRISPR‐dCas9 as an effective tool for tunable gene transcription repression in diverse microorganisms. Biotechnol. Bioeng. 2016;113: 2739–2743. © 2016 Wiley Periodicals, Inc.
The CRISPR‐dCas9 mediated gene transcription regulation led to efficient repression on amylase gene in C. beijerinckii demonstrated by the amylolytic activity assay with starch agar plate. Left: the dCas9 repressed culture. Right: the control culture.</abstract><cop>United States</cop><pub>Blackwell Publishing Ltd</pub><pmid>27240718</pmid><doi>10.1002/bit.26020</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-3592 |
ispartof | Biotechnology and bioengineering, 2016-12, Vol.113 (12), p.2739-2743 |
issn | 0006-3592 1097-0290 |
language | eng |
recordid | cdi_proquest_miscellaneous_1855361980 |
source | MEDLINE; Wiley Online Library |
subjects | Agar Amylase amylase activity Amylases - biosynthesis Amylases - genetics Bacteriology Bioengineering Biotechnology Clostridium Clostridium beijerinckii Clostridium beijerinckii - genetics Clustered Regularly Interspaced Short Palindromic Repeats - genetics CRISPR-Associated Proteins - genetics CRISPR-dCas9 CRISPRi Culture Down-Regulation - genetics Epigenetic Repression - genetics Fermentation Gene expression Gene Expression Regulation, Bacterial - genetics gene transcription repression Genes genome engineering Genomics Microbiology Microorganisms Ribonucleic acids Starches Streptococcus pyogenes synthetic biology Transcription, Genetic - genetics Transcriptional Activation - genetics |
title | Gene transcription repression in Clostridium beijerinckii using CRISPR-dCas9 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T19%3A34%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gene%20transcription%20repression%20in%20Clostridium%20beijerinckii%20using%20CRISPR-dCas9&rft.jtitle=Biotechnology%20and%20bioengineering&rft.au=Wang,%20Yi&rft.date=2016-12&rft.volume=113&rft.issue=12&rft.spage=2739&rft.epage=2743&rft.pages=2739-2743&rft.issn=0006-3592&rft.eissn=1097-0290&rft.coden=BIBIAU&rft_id=info:doi/10.1002/bit.26020&rft_dat=%3Cproquest_cross%3E4229919811%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1832923678&rft_id=info:pmid/27240718&rfr_iscdi=true |