Gene transcription repression in Clostridium beijerinckii using CRISPR-dCas9

ABSTRACT CRISPR‐Cas9 has been explored as a powerful tool for genome engineering for many organisms. Meanwhile, dCas9 which lacks endonuclease activity but can still bind to target loci has been engineered for efficient gene transcription repression. Clostridium beijerinckii, an industrially signifi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biotechnology and bioengineering 2016-12, Vol.113 (12), p.2739-2743
Hauptverfasser: Wang, Yi, Zhang, Zhong-Tian, Seo, Seung-Oh, Lynn, Patrick, Lu, Ting, Jin, Yong-Su, Blaschek, Hans P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2743
container_issue 12
container_start_page 2739
container_title Biotechnology and bioengineering
container_volume 113
creator Wang, Yi
Zhang, Zhong-Tian
Seo, Seung-Oh
Lynn, Patrick
Lu, Ting
Jin, Yong-Su
Blaschek, Hans P.
description ABSTRACT CRISPR‐Cas9 has been explored as a powerful tool for genome engineering for many organisms. Meanwhile, dCas9 which lacks endonuclease activity but can still bind to target loci has been engineered for efficient gene transcription repression. Clostridium beijerinckii, an industrially significant species capable of biosolvent production, is generally difficult to metabolically engineer. Recently, we reported our work in developing customized CRISPR‐Cas9 system for genome engineering in C. beijerinckii. However, in many cases, gene expression repression (rather than actual DNA mutation) is more desirable for various biotechnological applications. Here, we further demonstrated gene transcription repression in C. beijerinckii using CRISPR‐dCas9. A small RNA promoter was employed to drive the expression of the single chimeric guide RNA targeting on the promoter region of amylase gene, while a constitutive thiolase promoter was used to drive Streptococcus pyogenes dCas9 expression. The growth assay on starch agar plates showed qualitatively significant repression of amylase activity in C. beijerinckii transformant with CRISPR‐dCas9 compared to the control strain. Further amylase activity quantification demonstrated consistent repression (65–97% through the fermentation process) on the activity in the transformant with CRISPR‐dCas9 versus in the control. Our results provided essential references for engineering CRISPR‐dCas9 as an effective tool for tunable gene transcription repression in diverse microorganisms. Biotechnol. Bioeng. 2016;113: 2739–2743. © 2016 Wiley Periodicals, Inc. The CRISPR‐dCas9 mediated gene transcription regulation led to efficient repression on amylase gene in C. beijerinckii demonstrated by the amylolytic activity assay with starch agar plate. Left: the dCas9 repressed culture. Right: the control culture.
doi_str_mv 10.1002/bit.26020
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1855361980</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4229919811</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5600-6c65911c99576271bfa130bd31ad5bbfa82e6315a1ca36ba1bddae49650909203</originalsourceid><addsrcrecordid>eNqNkU1P4zAQhi0Egi5w2D-wisSFPQRm7NqOjxCxpaJ8qID2aDmJi1zSpNiJFv49LgUOKyFxmhnpeR9p9BLyE-EIAehx4bojKoDCBhkgKJkCVbBJBgAgUsYV3SE_QpjHU2ZCbJMdKukQJGYDMhnZxiadN00ovVt2rm0Sb5fehrBaXZPkdRs67yrXL5LCurn1rikfnUv64JqHJJ-Ob2-maZWboPbI1szUwe6_z11y_-fsLj9PJ9ejcX4ySUsuAFJRCq4QS6W4FFRiMTPIoKgYmooX8cqoFQy5wdIwURgsqsrYoRIcFCgKbJccrr1L3z71NnR64UJp69o0tu2DxoxzJlBl30GZpIoOGf0GSoVQmEmM6MF_6LztfRN_XgmjjwmZRer3mip9G4K3M730bmH8i0bQq-J0LE6_FRfZX-_GvljY6pP8aCoCx2vgn6vty9cmfTq--1Cm64QLnX3-TBj_qIVkkuu_VyN9MTlX01F2qXP2Cvugrkc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1832923678</pqid></control><display><type>article</type><title>Gene transcription repression in Clostridium beijerinckii using CRISPR-dCas9</title><source>MEDLINE</source><source>Wiley Online Library</source><creator>Wang, Yi ; Zhang, Zhong-Tian ; Seo, Seung-Oh ; Lynn, Patrick ; Lu, Ting ; Jin, Yong-Su ; Blaschek, Hans P.</creator><creatorcontrib>Wang, Yi ; Zhang, Zhong-Tian ; Seo, Seung-Oh ; Lynn, Patrick ; Lu, Ting ; Jin, Yong-Su ; Blaschek, Hans P.</creatorcontrib><description>ABSTRACT CRISPR‐Cas9 has been explored as a powerful tool for genome engineering for many organisms. Meanwhile, dCas9 which lacks endonuclease activity but can still bind to target loci has been engineered for efficient gene transcription repression. Clostridium beijerinckii, an industrially significant species capable of biosolvent production, is generally difficult to metabolically engineer. Recently, we reported our work in developing customized CRISPR‐Cas9 system for genome engineering in C. beijerinckii. However, in many cases, gene expression repression (rather than actual DNA mutation) is more desirable for various biotechnological applications. Here, we further demonstrated gene transcription repression in C. beijerinckii using CRISPR‐dCas9. A small RNA promoter was employed to drive the expression of the single chimeric guide RNA targeting on the promoter region of amylase gene, while a constitutive thiolase promoter was used to drive Streptococcus pyogenes dCas9 expression. The growth assay on starch agar plates showed qualitatively significant repression of amylase activity in C. beijerinckii transformant with CRISPR‐dCas9 compared to the control strain. Further amylase activity quantification demonstrated consistent repression (65–97% through the fermentation process) on the activity in the transformant with CRISPR‐dCas9 versus in the control. Our results provided essential references for engineering CRISPR‐dCas9 as an effective tool for tunable gene transcription repression in diverse microorganisms. Biotechnol. Bioeng. 2016;113: 2739–2743. © 2016 Wiley Periodicals, Inc. The CRISPR‐dCas9 mediated gene transcription regulation led to efficient repression on amylase gene in C. beijerinckii demonstrated by the amylolytic activity assay with starch agar plate. Left: the dCas9 repressed culture. Right: the control culture.</description><identifier>ISSN: 0006-3592</identifier><identifier>EISSN: 1097-0290</identifier><identifier>DOI: 10.1002/bit.26020</identifier><identifier>PMID: 27240718</identifier><identifier>CODEN: BIBIAU</identifier><language>eng</language><publisher>United States: Blackwell Publishing Ltd</publisher><subject>Agar ; Amylase ; amylase activity ; Amylases - biosynthesis ; Amylases - genetics ; Bacteriology ; Bioengineering ; Biotechnology ; Clostridium ; Clostridium beijerinckii ; Clostridium beijerinckii - genetics ; Clustered Regularly Interspaced Short Palindromic Repeats - genetics ; CRISPR-Associated Proteins - genetics ; CRISPR-dCas9 ; CRISPRi ; Culture ; Down-Regulation - genetics ; Epigenetic Repression - genetics ; Fermentation ; Gene expression ; Gene Expression Regulation, Bacterial - genetics ; gene transcription repression ; Genes ; genome engineering ; Genomics ; Microbiology ; Microorganisms ; Ribonucleic acids ; Starches ; Streptococcus pyogenes ; synthetic biology ; Transcription, Genetic - genetics ; Transcriptional Activation - genetics</subject><ispartof>Biotechnology and bioengineering, 2016-12, Vol.113 (12), p.2739-2743</ispartof><rights>2016 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5600-6c65911c99576271bfa130bd31ad5bbfa82e6315a1ca36ba1bddae49650909203</citedby><cites>FETCH-LOGICAL-c5600-6c65911c99576271bfa130bd31ad5bbfa82e6315a1ca36ba1bddae49650909203</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fbit.26020$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fbit.26020$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27240718$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Yi</creatorcontrib><creatorcontrib>Zhang, Zhong-Tian</creatorcontrib><creatorcontrib>Seo, Seung-Oh</creatorcontrib><creatorcontrib>Lynn, Patrick</creatorcontrib><creatorcontrib>Lu, Ting</creatorcontrib><creatorcontrib>Jin, Yong-Su</creatorcontrib><creatorcontrib>Blaschek, Hans P.</creatorcontrib><title>Gene transcription repression in Clostridium beijerinckii using CRISPR-dCas9</title><title>Biotechnology and bioengineering</title><addtitle>Biotechnol. Bioeng</addtitle><description>ABSTRACT CRISPR‐Cas9 has been explored as a powerful tool for genome engineering for many organisms. Meanwhile, dCas9 which lacks endonuclease activity but can still bind to target loci has been engineered for efficient gene transcription repression. Clostridium beijerinckii, an industrially significant species capable of biosolvent production, is generally difficult to metabolically engineer. Recently, we reported our work in developing customized CRISPR‐Cas9 system for genome engineering in C. beijerinckii. However, in many cases, gene expression repression (rather than actual DNA mutation) is more desirable for various biotechnological applications. Here, we further demonstrated gene transcription repression in C. beijerinckii using CRISPR‐dCas9. A small RNA promoter was employed to drive the expression of the single chimeric guide RNA targeting on the promoter region of amylase gene, while a constitutive thiolase promoter was used to drive Streptococcus pyogenes dCas9 expression. The growth assay on starch agar plates showed qualitatively significant repression of amylase activity in C. beijerinckii transformant with CRISPR‐dCas9 compared to the control strain. Further amylase activity quantification demonstrated consistent repression (65–97% through the fermentation process) on the activity in the transformant with CRISPR‐dCas9 versus in the control. Our results provided essential references for engineering CRISPR‐dCas9 as an effective tool for tunable gene transcription repression in diverse microorganisms. Biotechnol. Bioeng. 2016;113: 2739–2743. © 2016 Wiley Periodicals, Inc. The CRISPR‐dCas9 mediated gene transcription regulation led to efficient repression on amylase gene in C. beijerinckii demonstrated by the amylolytic activity assay with starch agar plate. Left: the dCas9 repressed culture. Right: the control culture.</description><subject>Agar</subject><subject>Amylase</subject><subject>amylase activity</subject><subject>Amylases - biosynthesis</subject><subject>Amylases - genetics</subject><subject>Bacteriology</subject><subject>Bioengineering</subject><subject>Biotechnology</subject><subject>Clostridium</subject><subject>Clostridium beijerinckii</subject><subject>Clostridium beijerinckii - genetics</subject><subject>Clustered Regularly Interspaced Short Palindromic Repeats - genetics</subject><subject>CRISPR-Associated Proteins - genetics</subject><subject>CRISPR-dCas9</subject><subject>CRISPRi</subject><subject>Culture</subject><subject>Down-Regulation - genetics</subject><subject>Epigenetic Repression - genetics</subject><subject>Fermentation</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Bacterial - genetics</subject><subject>gene transcription repression</subject><subject>Genes</subject><subject>genome engineering</subject><subject>Genomics</subject><subject>Microbiology</subject><subject>Microorganisms</subject><subject>Ribonucleic acids</subject><subject>Starches</subject><subject>Streptococcus pyogenes</subject><subject>synthetic biology</subject><subject>Transcription, Genetic - genetics</subject><subject>Transcriptional Activation - genetics</subject><issn>0006-3592</issn><issn>1097-0290</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkU1P4zAQhi0Egi5w2D-wisSFPQRm7NqOjxCxpaJ8qID2aDmJi1zSpNiJFv49LgUOKyFxmhnpeR9p9BLyE-EIAehx4bojKoDCBhkgKJkCVbBJBgAgUsYV3SE_QpjHU2ZCbJMdKukQJGYDMhnZxiadN00ovVt2rm0Sb5fehrBaXZPkdRs67yrXL5LCurn1rikfnUv64JqHJJ-Ob2-maZWboPbI1szUwe6_z11y_-fsLj9PJ9ejcX4ySUsuAFJRCq4QS6W4FFRiMTPIoKgYmooX8cqoFQy5wdIwURgsqsrYoRIcFCgKbJccrr1L3z71NnR64UJp69o0tu2DxoxzJlBl30GZpIoOGf0GSoVQmEmM6MF_6LztfRN_XgmjjwmZRer3mip9G4K3M730bmH8i0bQq-J0LE6_FRfZX-_GvljY6pP8aCoCx2vgn6vty9cmfTq--1Cm64QLnX3-TBj_qIVkkuu_VyN9MTlX01F2qXP2Cvugrkc</recordid><startdate>201612</startdate><enddate>201612</enddate><creator>Wang, Yi</creator><creator>Zhang, Zhong-Tian</creator><creator>Seo, Seung-Oh</creator><creator>Lynn, Patrick</creator><creator>Lu, Ting</creator><creator>Jin, Yong-Su</creator><creator>Blaschek, Hans P.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><scope>7QL</scope></search><sort><creationdate>201612</creationdate><title>Gene transcription repression in Clostridium beijerinckii using CRISPR-dCas9</title><author>Wang, Yi ; Zhang, Zhong-Tian ; Seo, Seung-Oh ; Lynn, Patrick ; Lu, Ting ; Jin, Yong-Su ; Blaschek, Hans P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5600-6c65911c99576271bfa130bd31ad5bbfa82e6315a1ca36ba1bddae49650909203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Agar</topic><topic>Amylase</topic><topic>amylase activity</topic><topic>Amylases - biosynthesis</topic><topic>Amylases - genetics</topic><topic>Bacteriology</topic><topic>Bioengineering</topic><topic>Biotechnology</topic><topic>Clostridium</topic><topic>Clostridium beijerinckii</topic><topic>Clostridium beijerinckii - genetics</topic><topic>Clustered Regularly Interspaced Short Palindromic Repeats - genetics</topic><topic>CRISPR-Associated Proteins - genetics</topic><topic>CRISPR-dCas9</topic><topic>CRISPRi</topic><topic>Culture</topic><topic>Down-Regulation - genetics</topic><topic>Epigenetic Repression - genetics</topic><topic>Fermentation</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Bacterial - genetics</topic><topic>gene transcription repression</topic><topic>Genes</topic><topic>genome engineering</topic><topic>Genomics</topic><topic>Microbiology</topic><topic>Microorganisms</topic><topic>Ribonucleic acids</topic><topic>Starches</topic><topic>Streptococcus pyogenes</topic><topic>synthetic biology</topic><topic>Transcription, Genetic - genetics</topic><topic>Transcriptional Activation - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yi</creatorcontrib><creatorcontrib>Zhang, Zhong-Tian</creatorcontrib><creatorcontrib>Seo, Seung-Oh</creatorcontrib><creatorcontrib>Lynn, Patrick</creatorcontrib><creatorcontrib>Lu, Ting</creatorcontrib><creatorcontrib>Jin, Yong-Su</creatorcontrib><creatorcontrib>Blaschek, Hans P.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><jtitle>Biotechnology and bioengineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yi</au><au>Zhang, Zhong-Tian</au><au>Seo, Seung-Oh</au><au>Lynn, Patrick</au><au>Lu, Ting</au><au>Jin, Yong-Su</au><au>Blaschek, Hans P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gene transcription repression in Clostridium beijerinckii using CRISPR-dCas9</atitle><jtitle>Biotechnology and bioengineering</jtitle><addtitle>Biotechnol. Bioeng</addtitle><date>2016-12</date><risdate>2016</risdate><volume>113</volume><issue>12</issue><spage>2739</spage><epage>2743</epage><pages>2739-2743</pages><issn>0006-3592</issn><eissn>1097-0290</eissn><coden>BIBIAU</coden><abstract>ABSTRACT CRISPR‐Cas9 has been explored as a powerful tool for genome engineering for many organisms. Meanwhile, dCas9 which lacks endonuclease activity but can still bind to target loci has been engineered for efficient gene transcription repression. Clostridium beijerinckii, an industrially significant species capable of biosolvent production, is generally difficult to metabolically engineer. Recently, we reported our work in developing customized CRISPR‐Cas9 system for genome engineering in C. beijerinckii. However, in many cases, gene expression repression (rather than actual DNA mutation) is more desirable for various biotechnological applications. Here, we further demonstrated gene transcription repression in C. beijerinckii using CRISPR‐dCas9. A small RNA promoter was employed to drive the expression of the single chimeric guide RNA targeting on the promoter region of amylase gene, while a constitutive thiolase promoter was used to drive Streptococcus pyogenes dCas9 expression. The growth assay on starch agar plates showed qualitatively significant repression of amylase activity in C. beijerinckii transformant with CRISPR‐dCas9 compared to the control strain. Further amylase activity quantification demonstrated consistent repression (65–97% through the fermentation process) on the activity in the transformant with CRISPR‐dCas9 versus in the control. Our results provided essential references for engineering CRISPR‐dCas9 as an effective tool for tunable gene transcription repression in diverse microorganisms. Biotechnol. Bioeng. 2016;113: 2739–2743. © 2016 Wiley Periodicals, Inc. The CRISPR‐dCas9 mediated gene transcription regulation led to efficient repression on amylase gene in C. beijerinckii demonstrated by the amylolytic activity assay with starch agar plate. Left: the dCas9 repressed culture. Right: the control culture.</abstract><cop>United States</cop><pub>Blackwell Publishing Ltd</pub><pmid>27240718</pmid><doi>10.1002/bit.26020</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0006-3592
ispartof Biotechnology and bioengineering, 2016-12, Vol.113 (12), p.2739-2743
issn 0006-3592
1097-0290
language eng
recordid cdi_proquest_miscellaneous_1855361980
source MEDLINE; Wiley Online Library
subjects Agar
Amylase
amylase activity
Amylases - biosynthesis
Amylases - genetics
Bacteriology
Bioengineering
Biotechnology
Clostridium
Clostridium beijerinckii
Clostridium beijerinckii - genetics
Clustered Regularly Interspaced Short Palindromic Repeats - genetics
CRISPR-Associated Proteins - genetics
CRISPR-dCas9
CRISPRi
Culture
Down-Regulation - genetics
Epigenetic Repression - genetics
Fermentation
Gene expression
Gene Expression Regulation, Bacterial - genetics
gene transcription repression
Genes
genome engineering
Genomics
Microbiology
Microorganisms
Ribonucleic acids
Starches
Streptococcus pyogenes
synthetic biology
Transcription, Genetic - genetics
Transcriptional Activation - genetics
title Gene transcription repression in Clostridium beijerinckii using CRISPR-dCas9
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T19%3A34%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gene%20transcription%20repression%20in%20Clostridium%20beijerinckii%20using%20CRISPR-dCas9&rft.jtitle=Biotechnology%20and%20bioengineering&rft.au=Wang,%20Yi&rft.date=2016-12&rft.volume=113&rft.issue=12&rft.spage=2739&rft.epage=2743&rft.pages=2739-2743&rft.issn=0006-3592&rft.eissn=1097-0290&rft.coden=BIBIAU&rft_id=info:doi/10.1002/bit.26020&rft_dat=%3Cproquest_cross%3E4229919811%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1832923678&rft_id=info:pmid/27240718&rfr_iscdi=true