Impact of topology in causal dynamical triangulations quantum gravity
We investigate the impact of spatial topology in 3 + 1-dimensional causal dynamical triangulations (CDT) by performing numerical simulations with toroidal spatial topology instead of the previously used spherical topology. In the case of spherical spatial topology, we observed in the so-called phase...
Gespeichert in:
Veröffentlicht in: | Physical review. D 2016-08, Vol.94 (4), Article 044010 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | |
container_title | Physical review. D |
container_volume | 94 |
creator | Ambjørn, J. Drogosz, Z. Gizbert-Studnicki, J. Görlich, A. Jurkiewicz, J. Nemeth, D. |
description | We investigate the impact of spatial topology in 3 + 1-dimensional causal dynamical triangulations (CDT) by performing numerical simulations with toroidal spatial topology instead of the previously used spherical topology. In the case of spherical spatial topology, we observed in the so-called phase C an average spatial volume distribution n(t) which after a suitable time redefinition could be identified as the spatial volume distribution of the four-sphere. Imposing toroidal spatial topology, we find that the average spatial volume distribution n(t) is constant. By measuring the covariance matrix of spatial volume fluctuations, we determine the form of the effective action. The difference compared to the spherical case is that the effective potential has changed such that it allows a constant average n(t). This is what we observe and this is what one would expect from a minisuperspace GR action, where only the scale factor is kept as dynamical variable. Although no background geometry is put in by hand, the full quantum theory of CDT is also with toroidal spatial toplogy able to identify a classical background geometry around which there are well-defined quantum fluctuations. |
doi_str_mv | 10.1103/PhysRevD.94.044010 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1855361663</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1855361663</sourcerecordid><originalsourceid>FETCH-LOGICAL-c399t-8954161039228ad837c5ef890f5a3c6c3b11ae5db6d64c34c60a728fd4188d523</originalsourceid><addsrcrecordid>eNo9kE9LwzAchoMoOOa-gKccvXQmzZ8mR5nTDQaK6Dn8lqaz0jZdkg767a1MPb3P4eXl5UHolpIlpYTdv36O8c2dHpeaLwnnhJILNMt5QTJCcn35z5Rco0WMX2RCSXRB6Qytt20PNmFf4eR73_jDiOsOWxgiNLgcO2hrO1EKNXSHoYFU-y7i4wBdGlp8CHCq03iDripoolv85hx9PK3fV5ts9_K8XT3sMsu0TpnSglM5XdZ5rqBUrLDCVUqTSgCz0rI9peBEuZel5JZxKwkUuapKTpUqRc7m6O682wd_HFxMpq2jdU0DnfNDNFQJwSSVkk3V_Fy1wccYXGX6ULcQRkOJ-dFm_rQZzc1ZG_sGmAliCg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1855361663</pqid></control><display><type>article</type><title>Impact of topology in causal dynamical triangulations quantum gravity</title><source>American Physical Society Journals</source><creator>Ambjørn, J. ; Drogosz, Z. ; Gizbert-Studnicki, J. ; Görlich, A. ; Jurkiewicz, J. ; Nemeth, D.</creator><creatorcontrib>Ambjørn, J. ; Drogosz, Z. ; Gizbert-Studnicki, J. ; Görlich, A. ; Jurkiewicz, J. ; Nemeth, D.</creatorcontrib><description>We investigate the impact of spatial topology in 3 + 1-dimensional causal dynamical triangulations (CDT) by performing numerical simulations with toroidal spatial topology instead of the previously used spherical topology. In the case of spherical spatial topology, we observed in the so-called phase C an average spatial volume distribution n(t) which after a suitable time redefinition could be identified as the spatial volume distribution of the four-sphere. Imposing toroidal spatial topology, we find that the average spatial volume distribution n(t) is constant. By measuring the covariance matrix of spatial volume fluctuations, we determine the form of the effective action. The difference compared to the spherical case is that the effective potential has changed such that it allows a constant average n(t). This is what we observe and this is what one would expect from a minisuperspace GR action, where only the scale factor is kept as dynamical variable. Although no background geometry is put in by hand, the full quantum theory of CDT is also with toroidal spatial toplogy able to identify a classical background geometry around which there are well-defined quantum fluctuations.</description><identifier>ISSN: 2470-0010</identifier><identifier>EISSN: 2470-0029</identifier><identifier>DOI: 10.1103/PhysRevD.94.044010</identifier><language>eng</language><subject>Constants ; Cosmology ; Fluctuation ; Gravitation ; Mathematical models ; Quantum gravity ; Topology ; Triangulation</subject><ispartof>Physical review. D, 2016-08, Vol.94 (4), Article 044010</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c399t-8954161039228ad837c5ef890f5a3c6c3b11ae5db6d64c34c60a728fd4188d523</citedby><cites>FETCH-LOGICAL-c399t-8954161039228ad837c5ef890f5a3c6c3b11ae5db6d64c34c60a728fd4188d523</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,2864,2865,27906,27907</link.rule.ids></links><search><creatorcontrib>Ambjørn, J.</creatorcontrib><creatorcontrib>Drogosz, Z.</creatorcontrib><creatorcontrib>Gizbert-Studnicki, J.</creatorcontrib><creatorcontrib>Görlich, A.</creatorcontrib><creatorcontrib>Jurkiewicz, J.</creatorcontrib><creatorcontrib>Nemeth, D.</creatorcontrib><title>Impact of topology in causal dynamical triangulations quantum gravity</title><title>Physical review. D</title><description>We investigate the impact of spatial topology in 3 + 1-dimensional causal dynamical triangulations (CDT) by performing numerical simulations with toroidal spatial topology instead of the previously used spherical topology. In the case of spherical spatial topology, we observed in the so-called phase C an average spatial volume distribution n(t) which after a suitable time redefinition could be identified as the spatial volume distribution of the four-sphere. Imposing toroidal spatial topology, we find that the average spatial volume distribution n(t) is constant. By measuring the covariance matrix of spatial volume fluctuations, we determine the form of the effective action. The difference compared to the spherical case is that the effective potential has changed such that it allows a constant average n(t). This is what we observe and this is what one would expect from a minisuperspace GR action, where only the scale factor is kept as dynamical variable. Although no background geometry is put in by hand, the full quantum theory of CDT is also with toroidal spatial toplogy able to identify a classical background geometry around which there are well-defined quantum fluctuations.</description><subject>Constants</subject><subject>Cosmology</subject><subject>Fluctuation</subject><subject>Gravitation</subject><subject>Mathematical models</subject><subject>Quantum gravity</subject><subject>Topology</subject><subject>Triangulation</subject><issn>2470-0010</issn><issn>2470-0029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNo9kE9LwzAchoMoOOa-gKccvXQmzZ8mR5nTDQaK6Dn8lqaz0jZdkg767a1MPb3P4eXl5UHolpIlpYTdv36O8c2dHpeaLwnnhJILNMt5QTJCcn35z5Rco0WMX2RCSXRB6Qytt20PNmFf4eR73_jDiOsOWxgiNLgcO2hrO1EKNXSHoYFU-y7i4wBdGlp8CHCq03iDripoolv85hx9PK3fV5ts9_K8XT3sMsu0TpnSglM5XdZ5rqBUrLDCVUqTSgCz0rI9peBEuZel5JZxKwkUuapKTpUqRc7m6O682wd_HFxMpq2jdU0DnfNDNFQJwSSVkk3V_Fy1wccYXGX6ULcQRkOJ-dFm_rQZzc1ZG_sGmAliCg</recordid><startdate>20160808</startdate><enddate>20160808</enddate><creator>Ambjørn, J.</creator><creator>Drogosz, Z.</creator><creator>Gizbert-Studnicki, J.</creator><creator>Görlich, A.</creator><creator>Jurkiewicz, J.</creator><creator>Nemeth, D.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20160808</creationdate><title>Impact of topology in causal dynamical triangulations quantum gravity</title><author>Ambjørn, J. ; Drogosz, Z. ; Gizbert-Studnicki, J. ; Görlich, A. ; Jurkiewicz, J. ; Nemeth, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c399t-8954161039228ad837c5ef890f5a3c6c3b11ae5db6d64c34c60a728fd4188d523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Constants</topic><topic>Cosmology</topic><topic>Fluctuation</topic><topic>Gravitation</topic><topic>Mathematical models</topic><topic>Quantum gravity</topic><topic>Topology</topic><topic>Triangulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ambjørn, J.</creatorcontrib><creatorcontrib>Drogosz, Z.</creatorcontrib><creatorcontrib>Gizbert-Studnicki, J.</creatorcontrib><creatorcontrib>Görlich, A.</creatorcontrib><creatorcontrib>Jurkiewicz, J.</creatorcontrib><creatorcontrib>Nemeth, D.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. D</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ambjørn, J.</au><au>Drogosz, Z.</au><au>Gizbert-Studnicki, J.</au><au>Görlich, A.</au><au>Jurkiewicz, J.</au><au>Nemeth, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impact of topology in causal dynamical triangulations quantum gravity</atitle><jtitle>Physical review. D</jtitle><date>2016-08-08</date><risdate>2016</risdate><volume>94</volume><issue>4</issue><artnum>044010</artnum><issn>2470-0010</issn><eissn>2470-0029</eissn><abstract>We investigate the impact of spatial topology in 3 + 1-dimensional causal dynamical triangulations (CDT) by performing numerical simulations with toroidal spatial topology instead of the previously used spherical topology. In the case of spherical spatial topology, we observed in the so-called phase C an average spatial volume distribution n(t) which after a suitable time redefinition could be identified as the spatial volume distribution of the four-sphere. Imposing toroidal spatial topology, we find that the average spatial volume distribution n(t) is constant. By measuring the covariance matrix of spatial volume fluctuations, we determine the form of the effective action. The difference compared to the spherical case is that the effective potential has changed such that it allows a constant average n(t). This is what we observe and this is what one would expect from a minisuperspace GR action, where only the scale factor is kept as dynamical variable. Although no background geometry is put in by hand, the full quantum theory of CDT is also with toroidal spatial toplogy able to identify a classical background geometry around which there are well-defined quantum fluctuations.</abstract><doi>10.1103/PhysRevD.94.044010</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2470-0010 |
ispartof | Physical review. D, 2016-08, Vol.94 (4), Article 044010 |
issn | 2470-0010 2470-0029 |
language | eng |
recordid | cdi_proquest_miscellaneous_1855361663 |
source | American Physical Society Journals |
subjects | Constants Cosmology Fluctuation Gravitation Mathematical models Quantum gravity Topology Triangulation |
title | Impact of topology in causal dynamical triangulations quantum gravity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T08%3A54%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impact%20of%20topology%20in%20causal%20dynamical%20triangulations%20quantum%20gravity&rft.jtitle=Physical%20review.%20D&rft.au=Ambj%C3%B8rn,%20J.&rft.date=2016-08-08&rft.volume=94&rft.issue=4&rft.artnum=044010&rft.issn=2470-0010&rft.eissn=2470-0029&rft_id=info:doi/10.1103/PhysRevD.94.044010&rft_dat=%3Cproquest_cross%3E1855361663%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1855361663&rft_id=info:pmid/&rfr_iscdi=true |