Chebyshev Approximation by Linear Combinations of Fixed Knot Polynomial Splines with Weighting Functions

In this paper, we derive conditions for best uniform approximation by fixed knots polynomial splines with weighting functions. The theory of Chebyshev approximation for fixed knots polynomial functions is very elegant and complete. Necessary and sufficient optimality conditions have been developed l...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of optimization theory and applications 2016-11, Vol.171 (2), p.536-549
Hauptverfasser: Sukhorukova, Nadezda, Ugon, Julien
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 549
container_issue 2
container_start_page 536
container_title Journal of optimization theory and applications
container_volume 171
creator Sukhorukova, Nadezda
Ugon, Julien
description In this paper, we derive conditions for best uniform approximation by fixed knots polynomial splines with weighting functions. The theory of Chebyshev approximation for fixed knots polynomial functions is very elegant and complete. Necessary and sufficient optimality conditions have been developed leading to efficient algorithms for constructing optimal spline approximations. The optimality conditions are based on the notion of alternance (maximal deviation points with alternating deviation signs). In this paper, we extend these results to the case when the model function is a product of fixed knots polynomial splines (whose parameters are subject to optimization) and other functions (whose parameters are predefined). This problem is nonsmooth, and therefore, we make use of convex and nonsmooth analysis to solve it.
doi_str_mv 10.1007/s10957-016-0887-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1855360703</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1855360703</sourcerecordid><originalsourceid>FETCH-LOGICAL-c301t-53ccbf4de6fe045d737de75b9bca67c91412fca66138961623789b14724c652a3</originalsourceid><addsrcrecordid>eNp1kFFLwzAQx4MoOKcfwLeAL75UL0mbpI8ynIoDBRUfQ5uma0aXzKbT7dubrT6I4NMdx-9_3P0QOidwRQDEdSCQZyIBwhOQMjYHaEQywRIqhTxEIwBKE0ZZfoxOQlgAQC5FOkLNpDHlNjTmE9-sVp3f2GXRW-9wucUz60zR4YlfltbtpwH7Gk_txlT40fkeP_t26_zSFi1-WbURD_jL9g1-N3be9NbN8XTt9D55io7qog3m7KeO0dv09nVyn8ye7h4mN7NEMyB9kjGtyzqtDK8NpFklmKiMyMq81AUXOicpoXVsOWEy54RTJmReklTQVPOMFmyMLoe98ZmPtQm9WtqgTdsWzvh1UERmGeMggEX04g-68OvOxesiRSUnKeV5pMhA6c6H0JlarbooqdsqAmrnXg3uVXSvdu4VxAwdMiGybm66X5v_DX0DVBWHGQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1828614269</pqid></control><display><type>article</type><title>Chebyshev Approximation by Linear Combinations of Fixed Knot Polynomial Splines with Weighting Functions</title><source>SpringerNature Journals</source><creator>Sukhorukova, Nadezda ; Ugon, Julien</creator><creatorcontrib>Sukhorukova, Nadezda ; Ugon, Julien</creatorcontrib><description>In this paper, we derive conditions for best uniform approximation by fixed knots polynomial splines with weighting functions. The theory of Chebyshev approximation for fixed knots polynomial functions is very elegant and complete. Necessary and sufficient optimality conditions have been developed leading to efficient algorithms for constructing optimal spline approximations. The optimality conditions are based on the notion of alternance (maximal deviation points with alternating deviation signs). In this paper, we extend these results to the case when the model function is a product of fixed knots polynomial splines (whose parameters are subject to optimization) and other functions (whose parameters are predefined). This problem is nonsmooth, and therefore, we make use of convex and nonsmooth analysis to solve it.</description><identifier>ISSN: 0022-3239</identifier><identifier>EISSN: 1573-2878</identifier><identifier>DOI: 10.1007/s10957-016-0887-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>20th century ; Applications of Mathematics ; Approximation ; Calculus of Variations and Optimal Control; Optimization ; Deviation ; Engineering ; Knots ; Linear programming ; Mathematical analysis ; Mathematical models ; Mathematics ; Mathematics and Statistics ; Operations Research/Decision Theory ; Optimization ; Optimization techniques ; Polynomials ; Signal processing ; Splines ; Studies ; Theory of Computation</subject><ispartof>Journal of optimization theory and applications, 2016-11, Vol.171 (2), p.536-549</ispartof><rights>Springer Science+Business Media New York 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c301t-53ccbf4de6fe045d737de75b9bca67c91412fca66138961623789b14724c652a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10957-016-0887-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10957-016-0887-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,782,786,27933,27934,41497,42566,51328</link.rule.ids></links><search><creatorcontrib>Sukhorukova, Nadezda</creatorcontrib><creatorcontrib>Ugon, Julien</creatorcontrib><title>Chebyshev Approximation by Linear Combinations of Fixed Knot Polynomial Splines with Weighting Functions</title><title>Journal of optimization theory and applications</title><addtitle>J Optim Theory Appl</addtitle><description>In this paper, we derive conditions for best uniform approximation by fixed knots polynomial splines with weighting functions. The theory of Chebyshev approximation for fixed knots polynomial functions is very elegant and complete. Necessary and sufficient optimality conditions have been developed leading to efficient algorithms for constructing optimal spline approximations. The optimality conditions are based on the notion of alternance (maximal deviation points with alternating deviation signs). In this paper, we extend these results to the case when the model function is a product of fixed knots polynomial splines (whose parameters are subject to optimization) and other functions (whose parameters are predefined). This problem is nonsmooth, and therefore, we make use of convex and nonsmooth analysis to solve it.</description><subject>20th century</subject><subject>Applications of Mathematics</subject><subject>Approximation</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Deviation</subject><subject>Engineering</subject><subject>Knots</subject><subject>Linear programming</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization</subject><subject>Optimization techniques</subject><subject>Polynomials</subject><subject>Signal processing</subject><subject>Splines</subject><subject>Studies</subject><subject>Theory of Computation</subject><issn>0022-3239</issn><issn>1573-2878</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kFFLwzAQx4MoOKcfwLeAL75UL0mbpI8ynIoDBRUfQ5uma0aXzKbT7dubrT6I4NMdx-9_3P0QOidwRQDEdSCQZyIBwhOQMjYHaEQywRIqhTxEIwBKE0ZZfoxOQlgAQC5FOkLNpDHlNjTmE9-sVp3f2GXRW-9wucUz60zR4YlfltbtpwH7Gk_txlT40fkeP_t26_zSFi1-WbURD_jL9g1-N3be9NbN8XTt9D55io7qog3m7KeO0dv09nVyn8ye7h4mN7NEMyB9kjGtyzqtDK8NpFklmKiMyMq81AUXOicpoXVsOWEy54RTJmReklTQVPOMFmyMLoe98ZmPtQm9WtqgTdsWzvh1UERmGeMggEX04g-68OvOxesiRSUnKeV5pMhA6c6H0JlarbooqdsqAmrnXg3uVXSvdu4VxAwdMiGybm66X5v_DX0DVBWHGQ</recordid><startdate>20161101</startdate><enddate>20161101</enddate><creator>Sukhorukova, Nadezda</creator><creator>Ugon, Julien</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L.0</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20161101</creationdate><title>Chebyshev Approximation by Linear Combinations of Fixed Knot Polynomial Splines with Weighting Functions</title><author>Sukhorukova, Nadezda ; Ugon, Julien</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c301t-53ccbf4de6fe045d737de75b9bca67c91412fca66138961623789b14724c652a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>20th century</topic><topic>Applications of Mathematics</topic><topic>Approximation</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Deviation</topic><topic>Engineering</topic><topic>Knots</topic><topic>Linear programming</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization</topic><topic>Optimization techniques</topic><topic>Polynomials</topic><topic>Signal processing</topic><topic>Splines</topic><topic>Studies</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sukhorukova, Nadezda</creatorcontrib><creatorcontrib>Ugon, Julien</creatorcontrib><collection>CrossRef</collection><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Proquest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of optimization theory and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sukhorukova, Nadezda</au><au>Ugon, Julien</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chebyshev Approximation by Linear Combinations of Fixed Knot Polynomial Splines with Weighting Functions</atitle><jtitle>Journal of optimization theory and applications</jtitle><stitle>J Optim Theory Appl</stitle><date>2016-11-01</date><risdate>2016</risdate><volume>171</volume><issue>2</issue><spage>536</spage><epage>549</epage><pages>536-549</pages><issn>0022-3239</issn><eissn>1573-2878</eissn><abstract>In this paper, we derive conditions for best uniform approximation by fixed knots polynomial splines with weighting functions. The theory of Chebyshev approximation for fixed knots polynomial functions is very elegant and complete. Necessary and sufficient optimality conditions have been developed leading to efficient algorithms for constructing optimal spline approximations. The optimality conditions are based on the notion of alternance (maximal deviation points with alternating deviation signs). In this paper, we extend these results to the case when the model function is a product of fixed knots polynomial splines (whose parameters are subject to optimization) and other functions (whose parameters are predefined). This problem is nonsmooth, and therefore, we make use of convex and nonsmooth analysis to solve it.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10957-016-0887-0</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-3239
ispartof Journal of optimization theory and applications, 2016-11, Vol.171 (2), p.536-549
issn 0022-3239
1573-2878
language eng
recordid cdi_proquest_miscellaneous_1855360703
source SpringerNature Journals
subjects 20th century
Applications of Mathematics
Approximation
Calculus of Variations and Optimal Control
Optimization
Deviation
Engineering
Knots
Linear programming
Mathematical analysis
Mathematical models
Mathematics
Mathematics and Statistics
Operations Research/Decision Theory
Optimization
Optimization techniques
Polynomials
Signal processing
Splines
Studies
Theory of Computation
title Chebyshev Approximation by Linear Combinations of Fixed Knot Polynomial Splines with Weighting Functions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-30T11%3A34%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chebyshev%20Approximation%20by%20Linear%20Combinations%20of%20Fixed%20Knot%20Polynomial%20Splines%20with%20Weighting%20Functions&rft.jtitle=Journal%20of%20optimization%20theory%20and%20applications&rft.au=Sukhorukova,%20Nadezda&rft.date=2016-11-01&rft.volume=171&rft.issue=2&rft.spage=536&rft.epage=549&rft.pages=536-549&rft.issn=0022-3239&rft.eissn=1573-2878&rft_id=info:doi/10.1007/s10957-016-0887-0&rft_dat=%3Cproquest_cross%3E1855360703%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1828614269&rft_id=info:pmid/&rfr_iscdi=true