Conditional Value at Risk-Based Model for Planning Agricultural Water and Return Flow Allocation in River Systems

In this study, a new methodology is presented for simultaneous agricultural water and return flow (waste load) allocation in rivers. In this methodology, an objective function based on Conditional Value at Risk (CVaR) and a Nonlinear Interval Number Programming (NINP) technique are utilized. The CVa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water resources management 2016-01, Vol.30 (1), p.427-443
Hauptverfasser: Soltani, Maryam, Kerachian, Reza, Nikoo, Mohammad Reza, Noory, Hamideh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 443
container_issue 1
container_start_page 427
container_title Water resources management
container_volume 30
creator Soltani, Maryam
Kerachian, Reza
Nikoo, Mohammad Reza
Noory, Hamideh
description In this study, a new methodology is presented for simultaneous agricultural water and return flow (waste load) allocation in rivers. In this methodology, an objective function based on Conditional Value at Risk (CVaR) and a Nonlinear Interval Number Programming (NINP) technique are utilized. The CVaR can handle uncertainties in the form of probability distributions, while NINP incorporates uncertain inputs which are only available as intervals. This CVaR-NINP framework is used for agricultural water and return flow allocation planning under uncertainty. In this paper, to reduce the amount of saline return flow discharged into the river, a part of return flow of each agricultural network is diverted to an evaporation pond. Some meta-models based on Artificial Neural Network (ANN) are trained and validated using the results of Soil, Water, Atmosphere and Plant (SWAP) simulation model to reliably approximate the quantity and Total Dissolved Solids (TDS) load of agricultural return flows in a critical 7-day period. The effectiveness of the proposed methodology is examined through applying it to a part of Karkheh River catchment in the southwestern part of Iran. The results confirm the applicability of the model in incorporating the main uncertainties and generating water and waste load allocation policies in the form of interval numbers.
doi_str_mv 10.1007/s11269-015-1170-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1855352238</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1765979050</sourcerecordid><originalsourceid>FETCH-LOGICAL-c476t-a597120b4207a0d95f1306c04d41f7d42bfec830208f8b582a1afbace349d593</originalsourceid><addsrcrecordid>eNqFkcFu1DAURS0EEkPhA1hhiQ0bl_ecOE6Ww6ilSEWgtsDSepPYoxSP3doJqH-Po7BALEBeWLLOPfLVZewlwikC6LcZUTadAFQCUYOAR2yDSlcCGwWP2QY6CaLWNT5lz3K-BSipDjbsfhfDME5jDOT5V_Kz5TTxqzF_F-8o24F_jIP13MXEP3sKYQwHvj2ksZ_9NKeS-UaTTZzCwK9seQn83MeffOt97GnR8jEU3Y_CXD_kyR7zc_bEkc_2xe_7hN2cn93sLsTlp_cfdttL0de6mQSpTqOEfS1BEwydclhB00M91Oj0UMu9s31bgYTWtXvVSkJye-ptVXeD6qoT9mbV3qV4P9s8meOYe-tLCRvnbLBVqlJSVu3_Ud2Uz3SgoKCv_0JvYyldehRKKVkOLEJcqT7FnJN15i6NR0oPBsEsc5l1LlPmMstcZjHLNZMLGw42_WH-R-jVGnIUDZVZsvlyLQGbsq9sGiWrX-qUn6s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1755252508</pqid></control><display><type>article</type><title>Conditional Value at Risk-Based Model for Planning Agricultural Water and Return Flow Allocation in River Systems</title><source>Springer Nature - Complete Springer Journals</source><creator>Soltani, Maryam ; Kerachian, Reza ; Nikoo, Mohammad Reza ; Noory, Hamideh</creator><creatorcontrib>Soltani, Maryam ; Kerachian, Reza ; Nikoo, Mohammad Reza ; Noory, Hamideh</creatorcontrib><description>In this study, a new methodology is presented for simultaneous agricultural water and return flow (waste load) allocation in rivers. In this methodology, an objective function based on Conditional Value at Risk (CVaR) and a Nonlinear Interval Number Programming (NINP) technique are utilized. The CVaR can handle uncertainties in the form of probability distributions, while NINP incorporates uncertain inputs which are only available as intervals. This CVaR-NINP framework is used for agricultural water and return flow allocation planning under uncertainty. In this paper, to reduce the amount of saline return flow discharged into the river, a part of return flow of each agricultural network is diverted to an evaporation pond. Some meta-models based on Artificial Neural Network (ANN) are trained and validated using the results of Soil, Water, Atmosphere and Plant (SWAP) simulation model to reliably approximate the quantity and Total Dissolved Solids (TDS) load of agricultural return flows in a critical 7-day period. The effectiveness of the proposed methodology is examined through applying it to a part of Karkheh River catchment in the southwestern part of Iran. The results confirm the applicability of the model in incorporating the main uncertainties and generating water and waste load allocation policies in the form of interval numbers.</description><identifier>ISSN: 0920-4741</identifier><identifier>EISSN: 1573-1650</identifier><identifier>DOI: 10.1007/s11269-015-1170-0</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Agricultural pollution ; Agricultural production ; Allocations ; Atmospheric Sciences ; Civil Engineering ; drainage water ; Earth and Environmental Science ; Earth Sciences ; Engineering schools ; Environment ; Evaporation ; Freshwater ; Geotechnical Engineering &amp; Applied Earth Sciences ; Hydrogeology ; Hydrology/Water Resources ; Intervals ; Irrigation ; issues and policy ; Learning theory ; Linear programming ; Load ; Methodology ; Methods ; Neural networks ; Nonlinear programming ; Objective function ; Optimization ; planning ; probability distribution ; Return flow ; risk ; River catchments ; River systems ; Rivers ; Salinity ; Simulation ; simulation models ; soil ; Stormwater management ; Studies ; Total dissolved solids ; Uncertainty ; Waste load ; Wastes ; wastewater ; Water quality ; Water resources management ; Watersheds</subject><ispartof>Water resources management, 2016-01, Vol.30 (1), p.427-443</ispartof><rights>Springer Science+Business Media Dordrecht 2015</rights><rights>Springer Science+Business Media Dordrecht 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c476t-a597120b4207a0d95f1306c04d41f7d42bfec830208f8b582a1afbace349d593</citedby><cites>FETCH-LOGICAL-c476t-a597120b4207a0d95f1306c04d41f7d42bfec830208f8b582a1afbace349d593</cites><orcidid>0000-0002-6284-1062</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11269-015-1170-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11269-015-1170-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Soltani, Maryam</creatorcontrib><creatorcontrib>Kerachian, Reza</creatorcontrib><creatorcontrib>Nikoo, Mohammad Reza</creatorcontrib><creatorcontrib>Noory, Hamideh</creatorcontrib><title>Conditional Value at Risk-Based Model for Planning Agricultural Water and Return Flow Allocation in River Systems</title><title>Water resources management</title><addtitle>Water Resour Manage</addtitle><description>In this study, a new methodology is presented for simultaneous agricultural water and return flow (waste load) allocation in rivers. In this methodology, an objective function based on Conditional Value at Risk (CVaR) and a Nonlinear Interval Number Programming (NINP) technique are utilized. The CVaR can handle uncertainties in the form of probability distributions, while NINP incorporates uncertain inputs which are only available as intervals. This CVaR-NINP framework is used for agricultural water and return flow allocation planning under uncertainty. In this paper, to reduce the amount of saline return flow discharged into the river, a part of return flow of each agricultural network is diverted to an evaporation pond. Some meta-models based on Artificial Neural Network (ANN) are trained and validated using the results of Soil, Water, Atmosphere and Plant (SWAP) simulation model to reliably approximate the quantity and Total Dissolved Solids (TDS) load of agricultural return flows in a critical 7-day period. The effectiveness of the proposed methodology is examined through applying it to a part of Karkheh River catchment in the southwestern part of Iran. The results confirm the applicability of the model in incorporating the main uncertainties and generating water and waste load allocation policies in the form of interval numbers.</description><subject>Agricultural pollution</subject><subject>Agricultural production</subject><subject>Allocations</subject><subject>Atmospheric Sciences</subject><subject>Civil Engineering</subject><subject>drainage water</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Engineering schools</subject><subject>Environment</subject><subject>Evaporation</subject><subject>Freshwater</subject><subject>Geotechnical Engineering &amp; Applied Earth Sciences</subject><subject>Hydrogeology</subject><subject>Hydrology/Water Resources</subject><subject>Intervals</subject><subject>Irrigation</subject><subject>issues and policy</subject><subject>Learning theory</subject><subject>Linear programming</subject><subject>Load</subject><subject>Methodology</subject><subject>Methods</subject><subject>Neural networks</subject><subject>Nonlinear programming</subject><subject>Objective function</subject><subject>Optimization</subject><subject>planning</subject><subject>probability distribution</subject><subject>Return flow</subject><subject>risk</subject><subject>River catchments</subject><subject>River systems</subject><subject>Rivers</subject><subject>Salinity</subject><subject>Simulation</subject><subject>simulation models</subject><subject>soil</subject><subject>Stormwater management</subject><subject>Studies</subject><subject>Total dissolved solids</subject><subject>Uncertainty</subject><subject>Waste load</subject><subject>Wastes</subject><subject>wastewater</subject><subject>Water quality</subject><subject>Water resources management</subject><subject>Watersheds</subject><issn>0920-4741</issn><issn>1573-1650</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqFkcFu1DAURS0EEkPhA1hhiQ0bl_ecOE6Ww6ilSEWgtsDSepPYoxSP3doJqH-Po7BALEBeWLLOPfLVZewlwikC6LcZUTadAFQCUYOAR2yDSlcCGwWP2QY6CaLWNT5lz3K-BSipDjbsfhfDME5jDOT5V_Kz5TTxqzF_F-8o24F_jIP13MXEP3sKYQwHvj2ksZ_9NKeS-UaTTZzCwK9seQn83MeffOt97GnR8jEU3Y_CXD_kyR7zc_bEkc_2xe_7hN2cn93sLsTlp_cfdttL0de6mQSpTqOEfS1BEwydclhB00M91Oj0UMu9s31bgYTWtXvVSkJye-ptVXeD6qoT9mbV3qV4P9s8meOYe-tLCRvnbLBVqlJSVu3_Ud2Uz3SgoKCv_0JvYyldehRKKVkOLEJcqT7FnJN15i6NR0oPBsEsc5l1LlPmMstcZjHLNZMLGw42_WH-R-jVGnIUDZVZsvlyLQGbsq9sGiWrX-qUn6s</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Soltani, Maryam</creator><creator>Kerachian, Reza</creator><creator>Nikoo, Mohammad Reza</creator><creator>Noory, Hamideh</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7QH</scope><scope>7ST</scope><scope>7UA</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>H97</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>KR7</scope><scope>L.-</scope><scope>L.0</scope><scope>L.G</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M2P</scope><scope>M7P</scope><scope>M7S</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope><scope>7TG</scope><scope>KL.</scope><orcidid>https://orcid.org/0000-0002-6284-1062</orcidid></search><sort><creationdate>20160101</creationdate><title>Conditional Value at Risk-Based Model for Planning Agricultural Water and Return Flow Allocation in River Systems</title><author>Soltani, Maryam ; Kerachian, Reza ; Nikoo, Mohammad Reza ; Noory, Hamideh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c476t-a597120b4207a0d95f1306c04d41f7d42bfec830208f8b582a1afbace349d593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Agricultural pollution</topic><topic>Agricultural production</topic><topic>Allocations</topic><topic>Atmospheric Sciences</topic><topic>Civil Engineering</topic><topic>drainage water</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Engineering schools</topic><topic>Environment</topic><topic>Evaporation</topic><topic>Freshwater</topic><topic>Geotechnical Engineering &amp; Applied Earth Sciences</topic><topic>Hydrogeology</topic><topic>Hydrology/Water Resources</topic><topic>Intervals</topic><topic>Irrigation</topic><topic>issues and policy</topic><topic>Learning theory</topic><topic>Linear programming</topic><topic>Load</topic><topic>Methodology</topic><topic>Methods</topic><topic>Neural networks</topic><topic>Nonlinear programming</topic><topic>Objective function</topic><topic>Optimization</topic><topic>planning</topic><topic>probability distribution</topic><topic>Return flow</topic><topic>risk</topic><topic>River catchments</topic><topic>River systems</topic><topic>Rivers</topic><topic>Salinity</topic><topic>Simulation</topic><topic>simulation models</topic><topic>soil</topic><topic>Stormwater management</topic><topic>Studies</topic><topic>Total dissolved solids</topic><topic>Uncertainty</topic><topic>Waste load</topic><topic>Wastes</topic><topic>wastewater</topic><topic>Water quality</topic><topic>Water resources management</topic><topic>Watersheds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Soltani, Maryam</creatorcontrib><creatorcontrib>Kerachian, Reza</creatorcontrib><creatorcontrib>Nikoo, Mohammad Reza</creatorcontrib><creatorcontrib>Noory, Hamideh</creatorcontrib><collection>AGRIS</collection><collection>CrossRef</collection><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><jtitle>Water resources management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Soltani, Maryam</au><au>Kerachian, Reza</au><au>Nikoo, Mohammad Reza</au><au>Noory, Hamideh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Conditional Value at Risk-Based Model for Planning Agricultural Water and Return Flow Allocation in River Systems</atitle><jtitle>Water resources management</jtitle><stitle>Water Resour Manage</stitle><date>2016-01-01</date><risdate>2016</risdate><volume>30</volume><issue>1</issue><spage>427</spage><epage>443</epage><pages>427-443</pages><issn>0920-4741</issn><eissn>1573-1650</eissn><abstract>In this study, a new methodology is presented for simultaneous agricultural water and return flow (waste load) allocation in rivers. In this methodology, an objective function based on Conditional Value at Risk (CVaR) and a Nonlinear Interval Number Programming (NINP) technique are utilized. The CVaR can handle uncertainties in the form of probability distributions, while NINP incorporates uncertain inputs which are only available as intervals. This CVaR-NINP framework is used for agricultural water and return flow allocation planning under uncertainty. In this paper, to reduce the amount of saline return flow discharged into the river, a part of return flow of each agricultural network is diverted to an evaporation pond. Some meta-models based on Artificial Neural Network (ANN) are trained and validated using the results of Soil, Water, Atmosphere and Plant (SWAP) simulation model to reliably approximate the quantity and Total Dissolved Solids (TDS) load of agricultural return flows in a critical 7-day period. The effectiveness of the proposed methodology is examined through applying it to a part of Karkheh River catchment in the southwestern part of Iran. The results confirm the applicability of the model in incorporating the main uncertainties and generating water and waste load allocation policies in the form of interval numbers.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11269-015-1170-0</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-6284-1062</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0920-4741
ispartof Water resources management, 2016-01, Vol.30 (1), p.427-443
issn 0920-4741
1573-1650
language eng
recordid cdi_proquest_miscellaneous_1855352238
source Springer Nature - Complete Springer Journals
subjects Agricultural pollution
Agricultural production
Allocations
Atmospheric Sciences
Civil Engineering
drainage water
Earth and Environmental Science
Earth Sciences
Engineering schools
Environment
Evaporation
Freshwater
Geotechnical Engineering & Applied Earth Sciences
Hydrogeology
Hydrology/Water Resources
Intervals
Irrigation
issues and policy
Learning theory
Linear programming
Load
Methodology
Methods
Neural networks
Nonlinear programming
Objective function
Optimization
planning
probability distribution
Return flow
risk
River catchments
River systems
Rivers
Salinity
Simulation
simulation models
soil
Stormwater management
Studies
Total dissolved solids
Uncertainty
Waste load
Wastes
wastewater
Water quality
Water resources management
Watersheds
title Conditional Value at Risk-Based Model for Planning Agricultural Water and Return Flow Allocation in River Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T01%3A27%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Conditional%20Value%20at%20Risk-Based%20Model%20for%20Planning%20Agricultural%20Water%20and%20Return%20Flow%20Allocation%20in%20River%20Systems&rft.jtitle=Water%20resources%20management&rft.au=Soltani,%20Maryam&rft.date=2016-01-01&rft.volume=30&rft.issue=1&rft.spage=427&rft.epage=443&rft.pages=427-443&rft.issn=0920-4741&rft.eissn=1573-1650&rft_id=info:doi/10.1007/s11269-015-1170-0&rft_dat=%3Cproquest_cross%3E1765979050%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1755252508&rft_id=info:pmid/&rfr_iscdi=true