Simple and multiple linear regression: sample size considerations

Abstract Objective The suggested “two subjects per variable” (2SPV) rule of thumb in the Austin and Steyerberg article is a chance to bring out some long-established and quite intuitive sample size considerations for both simple and multiple linear regression. Study Design and Setting This article d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of clinical epidemiology 2016-11, Vol.79, p.112-119
1. Verfasser: Hanley, James A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 119
container_issue
container_start_page 112
container_title Journal of clinical epidemiology
container_volume 79
creator Hanley, James A
description Abstract Objective The suggested “two subjects per variable” (2SPV) rule of thumb in the Austin and Steyerberg article is a chance to bring out some long-established and quite intuitive sample size considerations for both simple and multiple linear regression. Study Design and Setting This article distinguishes two of the major uses of regression models that imply very different sample size considerations, neither served well by the 2SPV rule. The first is etiological research, which contrasts mean Y levels at differing “exposure” (X) values and thus tends to focus on a single regression coefficient, possibly adjusted for confounders. The second research genre guides clinical practice. It addresses Y levels for individuals with different covariate patterns or “profiles.” It focuses on the profile-specific (mean) Y levels themselves, estimating them via linear compounds of regression coefficients and covariates. Results and Conclusion By drawing on long-established closed-form variance formulae that lie beneath the standard errors in multiple regression, and by rearranging them for heuristic purposes, one arrives at quite intuitive sample size considerations for both research genres.
doi_str_mv 10.1016/j.jclinepi.2016.05.014
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1855079512</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0895435616301895</els_id><sourcerecordid>4278215051</sourcerecordid><originalsourceid>FETCH-LOGICAL-c484t-797c897322da3c9ba059c1f51b3ecba75fea720cbce5f4574b1496fc3bb87e813</originalsourceid><addsrcrecordid>eNqNkstu1TAQhi0EoqeFV6gisWGT4LHjGwtEVbVQqRKLwtpynAlyyOVgJ0jl6XF6WpC6KauZkb_5R-N_CDkFWgEF-a6vej-ECfehYrmuqKgo1M_IDrTSpTAMnpMd1UaUNRfyiByn1FMKiirxkhwxxQ0HIXfk7CaM-wELN7XFuA5L2IpN2MUi4veIKYV5el8kd4el8BsLP08ptBjdkp_SK_Kic0PC1_fxhHy7vPh6_rm8_vLp6vzsuvS1rpdSGeW1UZyx1nFvGkeF8dAJaDj6xinRoVOM-saj6Gqh6gZqIzvPm0Yr1MBPyNuD7j7OP1dMix1D8jgMbsJ5TRa0EFQZAew_UCYVZNZk9M0jtJ_XOOVFMlVrZaQRMlPyQPk4pxSxs_sYRhdvLVC7-WF7--CH3fywVNjsR248vZdfmxHbv20PBmTg4wHA_HW_AkabfMDJYxsi-sW2c3h6xodHEhsVvBt-4C2mf_vYxCy1N9tVbEcBklPIOf8DfBiznQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1848796956</pqid></control><display><type>article</type><title>Simple and multiple linear regression: sample size considerations</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><source>MEDLINE</source><source>ProQuest Central UK/Ireland</source><creator>Hanley, James A</creator><creatorcontrib>Hanley, James A</creatorcontrib><description>Abstract Objective The suggested “two subjects per variable” (2SPV) rule of thumb in the Austin and Steyerberg article is a chance to bring out some long-established and quite intuitive sample size considerations for both simple and multiple linear regression. Study Design and Setting This article distinguishes two of the major uses of regression models that imply very different sample size considerations, neither served well by the 2SPV rule. The first is etiological research, which contrasts mean Y levels at differing “exposure” (X) values and thus tends to focus on a single regression coefficient, possibly adjusted for confounders. The second research genre guides clinical practice. It addresses Y levels for individuals with different covariate patterns or “profiles.” It focuses on the profile-specific (mean) Y levels themselves, estimating them via linear compounds of regression coefficients and covariates. Results and Conclusion By drawing on long-established closed-form variance formulae that lie beneath the standard errors in multiple regression, and by rearranging them for heuristic purposes, one arrives at quite intuitive sample size considerations for both research genres.</description><identifier>ISSN: 0895-4356</identifier><identifier>EISSN: 1878-5921</identifier><identifier>DOI: 10.1016/j.jclinepi.2016.05.014</identifier><identifier>PMID: 27393156</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Catheters ; Confounding ; Degrees of freedom ; Epidemiologic Research Design ; Epidemiology ; Humans ; Internal Medicine ; Linear Models ; Multivariate Analysis ; Power ; Precision ; Prediction ; Probability ; Random variables ; Regression analysis ; Sample Size</subject><ispartof>Journal of clinical epidemiology, 2016-11, Vol.79, p.112-119</ispartof><rights>Elsevier Inc.</rights><rights>2016 Elsevier Inc.</rights><rights>Copyright © 2016 Elsevier Inc. All rights reserved.</rights><rights>Copyright Elsevier Limited Nov 01, 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c484t-797c897322da3c9ba059c1f51b3ecba75fea720cbce5f4574b1496fc3bb87e813</citedby><cites>FETCH-LOGICAL-c484t-797c897322da3c9ba059c1f51b3ecba75fea720cbce5f4574b1496fc3bb87e813</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1848796956?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,778,782,3539,27907,27908,45978,64366,64368,64370,72220</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27393156$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hanley, James A</creatorcontrib><title>Simple and multiple linear regression: sample size considerations</title><title>Journal of clinical epidemiology</title><addtitle>J Clin Epidemiol</addtitle><description>Abstract Objective The suggested “two subjects per variable” (2SPV) rule of thumb in the Austin and Steyerberg article is a chance to bring out some long-established and quite intuitive sample size considerations for both simple and multiple linear regression. Study Design and Setting This article distinguishes two of the major uses of regression models that imply very different sample size considerations, neither served well by the 2SPV rule. The first is etiological research, which contrasts mean Y levels at differing “exposure” (X) values and thus tends to focus on a single regression coefficient, possibly adjusted for confounders. The second research genre guides clinical practice. It addresses Y levels for individuals with different covariate patterns or “profiles.” It focuses on the profile-specific (mean) Y levels themselves, estimating them via linear compounds of regression coefficients and covariates. Results and Conclusion By drawing on long-established closed-form variance formulae that lie beneath the standard errors in multiple regression, and by rearranging them for heuristic purposes, one arrives at quite intuitive sample size considerations for both research genres.</description><subject>Catheters</subject><subject>Confounding</subject><subject>Degrees of freedom</subject><subject>Epidemiologic Research Design</subject><subject>Epidemiology</subject><subject>Humans</subject><subject>Internal Medicine</subject><subject>Linear Models</subject><subject>Multivariate Analysis</subject><subject>Power</subject><subject>Precision</subject><subject>Prediction</subject><subject>Probability</subject><subject>Random variables</subject><subject>Regression analysis</subject><subject>Sample Size</subject><issn>0895-4356</issn><issn>1878-5921</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkstu1TAQhi0EoqeFV6gisWGT4LHjGwtEVbVQqRKLwtpynAlyyOVgJ0jl6XF6WpC6KauZkb_5R-N_CDkFWgEF-a6vej-ECfehYrmuqKgo1M_IDrTSpTAMnpMd1UaUNRfyiByn1FMKiirxkhwxxQ0HIXfk7CaM-wELN7XFuA5L2IpN2MUi4veIKYV5el8kd4el8BsLP08ptBjdkp_SK_Kic0PC1_fxhHy7vPh6_rm8_vLp6vzsuvS1rpdSGeW1UZyx1nFvGkeF8dAJaDj6xinRoVOM-saj6Gqh6gZqIzvPm0Yr1MBPyNuD7j7OP1dMix1D8jgMbsJ5TRa0EFQZAew_UCYVZNZk9M0jtJ_XOOVFMlVrZaQRMlPyQPk4pxSxs_sYRhdvLVC7-WF7--CH3fywVNjsR248vZdfmxHbv20PBmTg4wHA_HW_AkabfMDJYxsi-sW2c3h6xodHEhsVvBt-4C2mf_vYxCy1N9tVbEcBklPIOf8DfBiznQ</recordid><startdate>20161101</startdate><enddate>20161101</enddate><creator>Hanley, James A</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7RV</scope><scope>7T2</scope><scope>7T7</scope><scope>7TK</scope><scope>7U7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88C</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>K9.</scope><scope>KB0</scope><scope>M0S</scope><scope>M0T</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>7U2</scope></search><sort><creationdate>20161101</creationdate><title>Simple and multiple linear regression: sample size considerations</title><author>Hanley, James A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c484t-797c897322da3c9ba059c1f51b3ecba75fea720cbce5f4574b1496fc3bb87e813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Catheters</topic><topic>Confounding</topic><topic>Degrees of freedom</topic><topic>Epidemiologic Research Design</topic><topic>Epidemiology</topic><topic>Humans</topic><topic>Internal Medicine</topic><topic>Linear Models</topic><topic>Multivariate Analysis</topic><topic>Power</topic><topic>Precision</topic><topic>Prediction</topic><topic>Probability</topic><topic>Random variables</topic><topic>Regression analysis</topic><topic>Sample Size</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hanley, James A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Health and Safety Science Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Healthcare Administration Database (Alumni)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Healthcare Administration Database</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Safety Science and Risk</collection><jtitle>Journal of clinical epidemiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hanley, James A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simple and multiple linear regression: sample size considerations</atitle><jtitle>Journal of clinical epidemiology</jtitle><addtitle>J Clin Epidemiol</addtitle><date>2016-11-01</date><risdate>2016</risdate><volume>79</volume><spage>112</spage><epage>119</epage><pages>112-119</pages><issn>0895-4356</issn><eissn>1878-5921</eissn><abstract>Abstract Objective The suggested “two subjects per variable” (2SPV) rule of thumb in the Austin and Steyerberg article is a chance to bring out some long-established and quite intuitive sample size considerations for both simple and multiple linear regression. Study Design and Setting This article distinguishes two of the major uses of regression models that imply very different sample size considerations, neither served well by the 2SPV rule. The first is etiological research, which contrasts mean Y levels at differing “exposure” (X) values and thus tends to focus on a single regression coefficient, possibly adjusted for confounders. The second research genre guides clinical practice. It addresses Y levels for individuals with different covariate patterns or “profiles.” It focuses on the profile-specific (mean) Y levels themselves, estimating them via linear compounds of regression coefficients and covariates. Results and Conclusion By drawing on long-established closed-form variance formulae that lie beneath the standard errors in multiple regression, and by rearranging them for heuristic purposes, one arrives at quite intuitive sample size considerations for both research genres.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>27393156</pmid><doi>10.1016/j.jclinepi.2016.05.014</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0895-4356
ispartof Journal of clinical epidemiology, 2016-11, Vol.79, p.112-119
issn 0895-4356
1878-5921
language eng
recordid cdi_proquest_miscellaneous_1855079512
source Elsevier ScienceDirect Journals Complete - AutoHoldings; MEDLINE; ProQuest Central UK/Ireland
subjects Catheters
Confounding
Degrees of freedom
Epidemiologic Research Design
Epidemiology
Humans
Internal Medicine
Linear Models
Multivariate Analysis
Power
Precision
Prediction
Probability
Random variables
Regression analysis
Sample Size
title Simple and multiple linear regression: sample size considerations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T12%3A24%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simple%20and%20multiple%20linear%20regression:%20sample%20size%20considerations&rft.jtitle=Journal%20of%20clinical%20epidemiology&rft.au=Hanley,%20James%20A&rft.date=2016-11-01&rft.volume=79&rft.spage=112&rft.epage=119&rft.pages=112-119&rft.issn=0895-4356&rft.eissn=1878-5921&rft_id=info:doi/10.1016/j.jclinepi.2016.05.014&rft_dat=%3Cproquest_cross%3E4278215051%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1848796956&rft_id=info:pmid/27393156&rft_els_id=S0895435616301895&rfr_iscdi=true