Simple and multiple linear regression: sample size considerations
Abstract Objective The suggested “two subjects per variable” (2SPV) rule of thumb in the Austin and Steyerberg article is a chance to bring out some long-established and quite intuitive sample size considerations for both simple and multiple linear regression. Study Design and Setting This article d...
Gespeichert in:
Veröffentlicht in: | Journal of clinical epidemiology 2016-11, Vol.79, p.112-119 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 119 |
---|---|
container_issue | |
container_start_page | 112 |
container_title | Journal of clinical epidemiology |
container_volume | 79 |
creator | Hanley, James A |
description | Abstract Objective The suggested “two subjects per variable” (2SPV) rule of thumb in the Austin and Steyerberg article is a chance to bring out some long-established and quite intuitive sample size considerations for both simple and multiple linear regression. Study Design and Setting This article distinguishes two of the major uses of regression models that imply very different sample size considerations, neither served well by the 2SPV rule. The first is etiological research, which contrasts mean Y levels at differing “exposure” (X) values and thus tends to focus on a single regression coefficient, possibly adjusted for confounders. The second research genre guides clinical practice. It addresses Y levels for individuals with different covariate patterns or “profiles.” It focuses on the profile-specific (mean) Y levels themselves, estimating them via linear compounds of regression coefficients and covariates. Results and Conclusion By drawing on long-established closed-form variance formulae that lie beneath the standard errors in multiple regression, and by rearranging them for heuristic purposes, one arrives at quite intuitive sample size considerations for both research genres. |
doi_str_mv | 10.1016/j.jclinepi.2016.05.014 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1855079512</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0895435616301895</els_id><sourcerecordid>4278215051</sourcerecordid><originalsourceid>FETCH-LOGICAL-c484t-797c897322da3c9ba059c1f51b3ecba75fea720cbce5f4574b1496fc3bb87e813</originalsourceid><addsrcrecordid>eNqNkstu1TAQhi0EoqeFV6gisWGT4LHjGwtEVbVQqRKLwtpynAlyyOVgJ0jl6XF6WpC6KauZkb_5R-N_CDkFWgEF-a6vej-ECfehYrmuqKgo1M_IDrTSpTAMnpMd1UaUNRfyiByn1FMKiirxkhwxxQ0HIXfk7CaM-wELN7XFuA5L2IpN2MUi4veIKYV5el8kd4el8BsLP08ptBjdkp_SK_Kic0PC1_fxhHy7vPh6_rm8_vLp6vzsuvS1rpdSGeW1UZyx1nFvGkeF8dAJaDj6xinRoVOM-saj6Gqh6gZqIzvPm0Yr1MBPyNuD7j7OP1dMix1D8jgMbsJ5TRa0EFQZAew_UCYVZNZk9M0jtJ_XOOVFMlVrZaQRMlPyQPk4pxSxs_sYRhdvLVC7-WF7--CH3fywVNjsR248vZdfmxHbv20PBmTg4wHA_HW_AkabfMDJYxsi-sW2c3h6xodHEhsVvBt-4C2mf_vYxCy1N9tVbEcBklPIOf8DfBiznQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1848796956</pqid></control><display><type>article</type><title>Simple and multiple linear regression: sample size considerations</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><source>MEDLINE</source><source>ProQuest Central UK/Ireland</source><creator>Hanley, James A</creator><creatorcontrib>Hanley, James A</creatorcontrib><description>Abstract Objective The suggested “two subjects per variable” (2SPV) rule of thumb in the Austin and Steyerberg article is a chance to bring out some long-established and quite intuitive sample size considerations for both simple and multiple linear regression. Study Design and Setting This article distinguishes two of the major uses of regression models that imply very different sample size considerations, neither served well by the 2SPV rule. The first is etiological research, which contrasts mean Y levels at differing “exposure” (X) values and thus tends to focus on a single regression coefficient, possibly adjusted for confounders. The second research genre guides clinical practice. It addresses Y levels for individuals with different covariate patterns or “profiles.” It focuses on the profile-specific (mean) Y levels themselves, estimating them via linear compounds of regression coefficients and covariates. Results and Conclusion By drawing on long-established closed-form variance formulae that lie beneath the standard errors in multiple regression, and by rearranging them for heuristic purposes, one arrives at quite intuitive sample size considerations for both research genres.</description><identifier>ISSN: 0895-4356</identifier><identifier>EISSN: 1878-5921</identifier><identifier>DOI: 10.1016/j.jclinepi.2016.05.014</identifier><identifier>PMID: 27393156</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Catheters ; Confounding ; Degrees of freedom ; Epidemiologic Research Design ; Epidemiology ; Humans ; Internal Medicine ; Linear Models ; Multivariate Analysis ; Power ; Precision ; Prediction ; Probability ; Random variables ; Regression analysis ; Sample Size</subject><ispartof>Journal of clinical epidemiology, 2016-11, Vol.79, p.112-119</ispartof><rights>Elsevier Inc.</rights><rights>2016 Elsevier Inc.</rights><rights>Copyright © 2016 Elsevier Inc. All rights reserved.</rights><rights>Copyright Elsevier Limited Nov 01, 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c484t-797c897322da3c9ba059c1f51b3ecba75fea720cbce5f4574b1496fc3bb87e813</citedby><cites>FETCH-LOGICAL-c484t-797c897322da3c9ba059c1f51b3ecba75fea720cbce5f4574b1496fc3bb87e813</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1848796956?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,778,782,3539,27907,27908,45978,64366,64368,64370,72220</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27393156$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hanley, James A</creatorcontrib><title>Simple and multiple linear regression: sample size considerations</title><title>Journal of clinical epidemiology</title><addtitle>J Clin Epidemiol</addtitle><description>Abstract Objective The suggested “two subjects per variable” (2SPV) rule of thumb in the Austin and Steyerberg article is a chance to bring out some long-established and quite intuitive sample size considerations for both simple and multiple linear regression. Study Design and Setting This article distinguishes two of the major uses of regression models that imply very different sample size considerations, neither served well by the 2SPV rule. The first is etiological research, which contrasts mean Y levels at differing “exposure” (X) values and thus tends to focus on a single regression coefficient, possibly adjusted for confounders. The second research genre guides clinical practice. It addresses Y levels for individuals with different covariate patterns or “profiles.” It focuses on the profile-specific (mean) Y levels themselves, estimating them via linear compounds of regression coefficients and covariates. Results and Conclusion By drawing on long-established closed-form variance formulae that lie beneath the standard errors in multiple regression, and by rearranging them for heuristic purposes, one arrives at quite intuitive sample size considerations for both research genres.</description><subject>Catheters</subject><subject>Confounding</subject><subject>Degrees of freedom</subject><subject>Epidemiologic Research Design</subject><subject>Epidemiology</subject><subject>Humans</subject><subject>Internal Medicine</subject><subject>Linear Models</subject><subject>Multivariate Analysis</subject><subject>Power</subject><subject>Precision</subject><subject>Prediction</subject><subject>Probability</subject><subject>Random variables</subject><subject>Regression analysis</subject><subject>Sample Size</subject><issn>0895-4356</issn><issn>1878-5921</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkstu1TAQhi0EoqeFV6gisWGT4LHjGwtEVbVQqRKLwtpynAlyyOVgJ0jl6XF6WpC6KauZkb_5R-N_CDkFWgEF-a6vej-ECfehYrmuqKgo1M_IDrTSpTAMnpMd1UaUNRfyiByn1FMKiirxkhwxxQ0HIXfk7CaM-wELN7XFuA5L2IpN2MUi4veIKYV5el8kd4el8BsLP08ptBjdkp_SK_Kic0PC1_fxhHy7vPh6_rm8_vLp6vzsuvS1rpdSGeW1UZyx1nFvGkeF8dAJaDj6xinRoVOM-saj6Gqh6gZqIzvPm0Yr1MBPyNuD7j7OP1dMix1D8jgMbsJ5TRa0EFQZAew_UCYVZNZk9M0jtJ_XOOVFMlVrZaQRMlPyQPk4pxSxs_sYRhdvLVC7-WF7--CH3fywVNjsR248vZdfmxHbv20PBmTg4wHA_HW_AkabfMDJYxsi-sW2c3h6xodHEhsVvBt-4C2mf_vYxCy1N9tVbEcBklPIOf8DfBiznQ</recordid><startdate>20161101</startdate><enddate>20161101</enddate><creator>Hanley, James A</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7RV</scope><scope>7T2</scope><scope>7T7</scope><scope>7TK</scope><scope>7U7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88C</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>K9.</scope><scope>KB0</scope><scope>M0S</scope><scope>M0T</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>7U2</scope></search><sort><creationdate>20161101</creationdate><title>Simple and multiple linear regression: sample size considerations</title><author>Hanley, James A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c484t-797c897322da3c9ba059c1f51b3ecba75fea720cbce5f4574b1496fc3bb87e813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Catheters</topic><topic>Confounding</topic><topic>Degrees of freedom</topic><topic>Epidemiologic Research Design</topic><topic>Epidemiology</topic><topic>Humans</topic><topic>Internal Medicine</topic><topic>Linear Models</topic><topic>Multivariate Analysis</topic><topic>Power</topic><topic>Precision</topic><topic>Prediction</topic><topic>Probability</topic><topic>Random variables</topic><topic>Regression analysis</topic><topic>Sample Size</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hanley, James A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Health and Safety Science Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Healthcare Administration Database (Alumni)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Healthcare Administration Database</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Safety Science and Risk</collection><jtitle>Journal of clinical epidemiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hanley, James A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simple and multiple linear regression: sample size considerations</atitle><jtitle>Journal of clinical epidemiology</jtitle><addtitle>J Clin Epidemiol</addtitle><date>2016-11-01</date><risdate>2016</risdate><volume>79</volume><spage>112</spage><epage>119</epage><pages>112-119</pages><issn>0895-4356</issn><eissn>1878-5921</eissn><abstract>Abstract Objective The suggested “two subjects per variable” (2SPV) rule of thumb in the Austin and Steyerberg article is a chance to bring out some long-established and quite intuitive sample size considerations for both simple and multiple linear regression. Study Design and Setting This article distinguishes two of the major uses of regression models that imply very different sample size considerations, neither served well by the 2SPV rule. The first is etiological research, which contrasts mean Y levels at differing “exposure” (X) values and thus tends to focus on a single regression coefficient, possibly adjusted for confounders. The second research genre guides clinical practice. It addresses Y levels for individuals with different covariate patterns or “profiles.” It focuses on the profile-specific (mean) Y levels themselves, estimating them via linear compounds of regression coefficients and covariates. Results and Conclusion By drawing on long-established closed-form variance formulae that lie beneath the standard errors in multiple regression, and by rearranging them for heuristic purposes, one arrives at quite intuitive sample size considerations for both research genres.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>27393156</pmid><doi>10.1016/j.jclinepi.2016.05.014</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0895-4356 |
ispartof | Journal of clinical epidemiology, 2016-11, Vol.79, p.112-119 |
issn | 0895-4356 1878-5921 |
language | eng |
recordid | cdi_proquest_miscellaneous_1855079512 |
source | Elsevier ScienceDirect Journals Complete - AutoHoldings; MEDLINE; ProQuest Central UK/Ireland |
subjects | Catheters Confounding Degrees of freedom Epidemiologic Research Design Epidemiology Humans Internal Medicine Linear Models Multivariate Analysis Power Precision Prediction Probability Random variables Regression analysis Sample Size |
title | Simple and multiple linear regression: sample size considerations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T12%3A24%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simple%20and%20multiple%20linear%20regression:%20sample%20size%20considerations&rft.jtitle=Journal%20of%20clinical%20epidemiology&rft.au=Hanley,%20James%20A&rft.date=2016-11-01&rft.volume=79&rft.spage=112&rft.epage=119&rft.pages=112-119&rft.issn=0895-4356&rft.eissn=1878-5921&rft_id=info:doi/10.1016/j.jclinepi.2016.05.014&rft_dat=%3Cproquest_cross%3E4278215051%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1848796956&rft_id=info:pmid/27393156&rft_els_id=S0895435616301895&rfr_iscdi=true |