Visible-Light-Responsive Graphitic Carbon Nitride: Rational Design and Photocatalytic Applications for Water Treatment

Graphitic carbon nitride (g-C3N4) has recently emerged as a promising visible-light-responsive polymeric photocatalyst; however, a molecular-level understanding of material properties and its application for water purification were underexplored. In this study, we rationally designed nonmetal doped,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science & technology 2016-12, Vol.50 (23), p.12938-12948
Hauptverfasser: Zheng, Qinmin, Durkin, David P, Elenewski, Justin E, Sun, Yingxue, Banek, Nathan A, Hua, Likun, Chen, Hanning, Wagner, Michael J, Zhang, Wen, Shuai, Danmeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12948
container_issue 23
container_start_page 12938
container_title Environmental science & technology
container_volume 50
creator Zheng, Qinmin
Durkin, David P
Elenewski, Justin E
Sun, Yingxue
Banek, Nathan A
Hua, Likun
Chen, Hanning
Wagner, Michael J
Zhang, Wen
Shuai, Danmeng
description Graphitic carbon nitride (g-C3N4) has recently emerged as a promising visible-light-responsive polymeric photocatalyst; however, a molecular-level understanding of material properties and its application for water purification were underexplored. In this study, we rationally designed nonmetal doped, supramolecule-based g-C3N4 with improved surface area and charge separation. Density functional theory (DFT) simulations indicated that carbon-doped g-C3N4 showed a thermodynamically stable structure, promoted charge separation, and had suitable energy levels of conduction and valence bands for photocatalytic oxidation compared to phosphorus-doped g-C3N4. The optimized carbon-doped, supramolecule-based g-C3N4 showed a reaction rate enhancement of 2.3–10.5-fold for the degradation of phenol and persistent organic micropollutants compared to that of conventional, melamine-based g-C3N4 in a model buffer system under the irradiation of simulated visible sunlight. Carbon-doping but not phosphorus-doping improved reactivity for contaminant degradation in agreement with DFT simulation results. Selective contaminant degradation was observed on g-C3N4, likely due to differences in reactive oxygen species production and/or contaminant-photocatalyst interfacial interactions on different g-C3N4 samples. Moreover, g-C3N4 is a robust photocatalyst for contaminant degradation in raw natural water and (partially) treated water and wastewater. In summary, DFT simulations are a viable tool to predict photocatalyst properties and oxidation performance for contaminant removal, and they guide the rational design, fabrication, and implementation of visible-light-responsive g-C3N4 for efficient, robust, and sustainable water treatment.
doi_str_mv 10.1021/acs.est.6b02579
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1855077341</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4276379561</sourcerecordid><originalsourceid>FETCH-LOGICAL-a497t-78471c8d9c3922f5dbe92a17667caa1c82b5aab46ca2e62f6ddc632dedf362ed3</originalsourceid><addsrcrecordid>eNqN0c9rFDEUB_Agit1Wz94k4EUos82PyWTiray1CkuVUn_chjfJm27K7GSaZAv97zvbXRWEgqcc3uf7Au9LyBvO5pwJfgI2zTHledUyobR5RmZcCVaoWvHnZMYYl4WR1a8DcpjSDWNMSFa_JAdCG1kKrWfk7odPvu2xWPrrVS4uMY1hSP4O6XmEceWzt3QBsQ0DvfA5eocf6CVkHwbo6UdM_nqgMDj6bRVysJChv99GTsex9_bRJdqFSH9CxkivIkJe45BfkRcd9Alf798j8v3T2dXic7H8ev5lcbosoDQ6F7ouNbe1M1YaITrlWjQCuK4qbQGmiWgVQFtWFgRWoqucs5UUDl0nK4FOHpH3u71jDLeb6VLN2ieLfQ8Dhk1qeK0U01qW_D9oqWvDlaon-u4fehM2cbrIo6qZ4ZKVkzrZKRtDShG7Zox-DfG-4azZttdM7TXb9L69KfF2v3fTrtH98b_rmsDxDmyTf_98Yt0DMOimvw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1848091304</pqid></control><display><type>article</type><title>Visible-Light-Responsive Graphitic Carbon Nitride: Rational Design and Photocatalytic Applications for Water Treatment</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Zheng, Qinmin ; Durkin, David P ; Elenewski, Justin E ; Sun, Yingxue ; Banek, Nathan A ; Hua, Likun ; Chen, Hanning ; Wagner, Michael J ; Zhang, Wen ; Shuai, Danmeng</creator><creatorcontrib>Zheng, Qinmin ; Durkin, David P ; Elenewski, Justin E ; Sun, Yingxue ; Banek, Nathan A ; Hua, Likun ; Chen, Hanning ; Wagner, Michael J ; Zhang, Wen ; Shuai, Danmeng</creatorcontrib><description>Graphitic carbon nitride (g-C3N4) has recently emerged as a promising visible-light-responsive polymeric photocatalyst; however, a molecular-level understanding of material properties and its application for water purification were underexplored. In this study, we rationally designed nonmetal doped, supramolecule-based g-C3N4 with improved surface area and charge separation. Density functional theory (DFT) simulations indicated that carbon-doped g-C3N4 showed a thermodynamically stable structure, promoted charge separation, and had suitable energy levels of conduction and valence bands for photocatalytic oxidation compared to phosphorus-doped g-C3N4. The optimized carbon-doped, supramolecule-based g-C3N4 showed a reaction rate enhancement of 2.3–10.5-fold for the degradation of phenol and persistent organic micropollutants compared to that of conventional, melamine-based g-C3N4 in a model buffer system under the irradiation of simulated visible sunlight. Carbon-doping but not phosphorus-doping improved reactivity for contaminant degradation in agreement with DFT simulation results. Selective contaminant degradation was observed on g-C3N4, likely due to differences in reactive oxygen species production and/or contaminant-photocatalyst interfacial interactions on different g-C3N4 samples. Moreover, g-C3N4 is a robust photocatalyst for contaminant degradation in raw natural water and (partially) treated water and wastewater. In summary, DFT simulations are a viable tool to predict photocatalyst properties and oxidation performance for contaminant removal, and they guide the rational design, fabrication, and implementation of visible-light-responsive g-C3N4 for efficient, robust, and sustainable water treatment.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/acs.est.6b02579</identifier><identifier>PMID: 27934277</identifier><identifier>CODEN: ESTHAG</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Carbon ; Catalysis ; Graphite - chemistry ; Light ; Oxidation ; Phenols ; Photocatalysis ; Thermodynamics ; Water Purification ; Water treatment</subject><ispartof>Environmental science &amp; technology, 2016-12, Vol.50 (23), p.12938-12948</ispartof><rights>Copyright © 2016 American Chemical Society</rights><rights>Copyright American Chemical Society Dec 6, 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a497t-78471c8d9c3922f5dbe92a17667caa1c82b5aab46ca2e62f6ddc632dedf362ed3</citedby><cites>FETCH-LOGICAL-a497t-78471c8d9c3922f5dbe92a17667caa1c82b5aab46ca2e62f6ddc632dedf362ed3</cites><orcidid>0000-0001-8413-0598</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.est.6b02579$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.est.6b02579$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27934277$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zheng, Qinmin</creatorcontrib><creatorcontrib>Durkin, David P</creatorcontrib><creatorcontrib>Elenewski, Justin E</creatorcontrib><creatorcontrib>Sun, Yingxue</creatorcontrib><creatorcontrib>Banek, Nathan A</creatorcontrib><creatorcontrib>Hua, Likun</creatorcontrib><creatorcontrib>Chen, Hanning</creatorcontrib><creatorcontrib>Wagner, Michael J</creatorcontrib><creatorcontrib>Zhang, Wen</creatorcontrib><creatorcontrib>Shuai, Danmeng</creatorcontrib><title>Visible-Light-Responsive Graphitic Carbon Nitride: Rational Design and Photocatalytic Applications for Water Treatment</title><title>Environmental science &amp; technology</title><addtitle>Environ. Sci. Technol</addtitle><description>Graphitic carbon nitride (g-C3N4) has recently emerged as a promising visible-light-responsive polymeric photocatalyst; however, a molecular-level understanding of material properties and its application for water purification were underexplored. In this study, we rationally designed nonmetal doped, supramolecule-based g-C3N4 with improved surface area and charge separation. Density functional theory (DFT) simulations indicated that carbon-doped g-C3N4 showed a thermodynamically stable structure, promoted charge separation, and had suitable energy levels of conduction and valence bands for photocatalytic oxidation compared to phosphorus-doped g-C3N4. The optimized carbon-doped, supramolecule-based g-C3N4 showed a reaction rate enhancement of 2.3–10.5-fold for the degradation of phenol and persistent organic micropollutants compared to that of conventional, melamine-based g-C3N4 in a model buffer system under the irradiation of simulated visible sunlight. Carbon-doping but not phosphorus-doping improved reactivity for contaminant degradation in agreement with DFT simulation results. Selective contaminant degradation was observed on g-C3N4, likely due to differences in reactive oxygen species production and/or contaminant-photocatalyst interfacial interactions on different g-C3N4 samples. Moreover, g-C3N4 is a robust photocatalyst for contaminant degradation in raw natural water and (partially) treated water and wastewater. In summary, DFT simulations are a viable tool to predict photocatalyst properties and oxidation performance for contaminant removal, and they guide the rational design, fabrication, and implementation of visible-light-responsive g-C3N4 for efficient, robust, and sustainable water treatment.</description><subject>Carbon</subject><subject>Catalysis</subject><subject>Graphite - chemistry</subject><subject>Light</subject><subject>Oxidation</subject><subject>Phenols</subject><subject>Photocatalysis</subject><subject>Thermodynamics</subject><subject>Water Purification</subject><subject>Water treatment</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqN0c9rFDEUB_Agit1Wz94k4EUos82PyWTiray1CkuVUn_chjfJm27K7GSaZAv97zvbXRWEgqcc3uf7Au9LyBvO5pwJfgI2zTHledUyobR5RmZcCVaoWvHnZMYYl4WR1a8DcpjSDWNMSFa_JAdCG1kKrWfk7odPvu2xWPrrVS4uMY1hSP4O6XmEceWzt3QBsQ0DvfA5eocf6CVkHwbo6UdM_nqgMDj6bRVysJChv99GTsex9_bRJdqFSH9CxkivIkJe45BfkRcd9Alf798j8v3T2dXic7H8ev5lcbosoDQ6F7ouNbe1M1YaITrlWjQCuK4qbQGmiWgVQFtWFgRWoqucs5UUDl0nK4FOHpH3u71jDLeb6VLN2ieLfQ8Dhk1qeK0U01qW_D9oqWvDlaon-u4fehM2cbrIo6qZ4ZKVkzrZKRtDShG7Zox-DfG-4azZttdM7TXb9L69KfF2v3fTrtH98b_rmsDxDmyTf_98Yt0DMOimvw</recordid><startdate>20161206</startdate><enddate>20161206</enddate><creator>Zheng, Qinmin</creator><creator>Durkin, David P</creator><creator>Elenewski, Justin E</creator><creator>Sun, Yingxue</creator><creator>Banek, Nathan A</creator><creator>Hua, Likun</creator><creator>Chen, Hanning</creator><creator>Wagner, Michael J</creator><creator>Zhang, Wen</creator><creator>Shuai, Danmeng</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><scope>7QH</scope><scope>7TV</scope><scope>7UA</scope><scope>F1W</scope><scope>H97</scope><scope>L.G</scope><orcidid>https://orcid.org/0000-0001-8413-0598</orcidid></search><sort><creationdate>20161206</creationdate><title>Visible-Light-Responsive Graphitic Carbon Nitride: Rational Design and Photocatalytic Applications for Water Treatment</title><author>Zheng, Qinmin ; Durkin, David P ; Elenewski, Justin E ; Sun, Yingxue ; Banek, Nathan A ; Hua, Likun ; Chen, Hanning ; Wagner, Michael J ; Zhang, Wen ; Shuai, Danmeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a497t-78471c8d9c3922f5dbe92a17667caa1c82b5aab46ca2e62f6ddc632dedf362ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Carbon</topic><topic>Catalysis</topic><topic>Graphite - chemistry</topic><topic>Light</topic><topic>Oxidation</topic><topic>Phenols</topic><topic>Photocatalysis</topic><topic>Thermodynamics</topic><topic>Water Purification</topic><topic>Water treatment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Qinmin</creatorcontrib><creatorcontrib>Durkin, David P</creatorcontrib><creatorcontrib>Elenewski, Justin E</creatorcontrib><creatorcontrib>Sun, Yingxue</creatorcontrib><creatorcontrib>Banek, Nathan A</creatorcontrib><creatorcontrib>Hua, Likun</creatorcontrib><creatorcontrib>Chen, Hanning</creatorcontrib><creatorcontrib>Wagner, Michael J</creatorcontrib><creatorcontrib>Zhang, Wen</creatorcontrib><creatorcontrib>Shuai, Danmeng</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Aqualine</collection><collection>Pollution Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Environmental science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, Qinmin</au><au>Durkin, David P</au><au>Elenewski, Justin E</au><au>Sun, Yingxue</au><au>Banek, Nathan A</au><au>Hua, Likun</au><au>Chen, Hanning</au><au>Wagner, Michael J</au><au>Zhang, Wen</au><au>Shuai, Danmeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Visible-Light-Responsive Graphitic Carbon Nitride: Rational Design and Photocatalytic Applications for Water Treatment</atitle><jtitle>Environmental science &amp; technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2016-12-06</date><risdate>2016</risdate><volume>50</volume><issue>23</issue><spage>12938</spage><epage>12948</epage><pages>12938-12948</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><coden>ESTHAG</coden><abstract>Graphitic carbon nitride (g-C3N4) has recently emerged as a promising visible-light-responsive polymeric photocatalyst; however, a molecular-level understanding of material properties and its application for water purification were underexplored. In this study, we rationally designed nonmetal doped, supramolecule-based g-C3N4 with improved surface area and charge separation. Density functional theory (DFT) simulations indicated that carbon-doped g-C3N4 showed a thermodynamically stable structure, promoted charge separation, and had suitable energy levels of conduction and valence bands for photocatalytic oxidation compared to phosphorus-doped g-C3N4. The optimized carbon-doped, supramolecule-based g-C3N4 showed a reaction rate enhancement of 2.3–10.5-fold for the degradation of phenol and persistent organic micropollutants compared to that of conventional, melamine-based g-C3N4 in a model buffer system under the irradiation of simulated visible sunlight. Carbon-doping but not phosphorus-doping improved reactivity for contaminant degradation in agreement with DFT simulation results. Selective contaminant degradation was observed on g-C3N4, likely due to differences in reactive oxygen species production and/or contaminant-photocatalyst interfacial interactions on different g-C3N4 samples. Moreover, g-C3N4 is a robust photocatalyst for contaminant degradation in raw natural water and (partially) treated water and wastewater. In summary, DFT simulations are a viable tool to predict photocatalyst properties and oxidation performance for contaminant removal, and they guide the rational design, fabrication, and implementation of visible-light-responsive g-C3N4 for efficient, robust, and sustainable water treatment.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>27934277</pmid><doi>10.1021/acs.est.6b02579</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-8413-0598</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0013-936X
ispartof Environmental science & technology, 2016-12, Vol.50 (23), p.12938-12948
issn 0013-936X
1520-5851
language eng
recordid cdi_proquest_miscellaneous_1855077341
source MEDLINE; American Chemical Society Journals
subjects Carbon
Catalysis
Graphite - chemistry
Light
Oxidation
Phenols
Photocatalysis
Thermodynamics
Water Purification
Water treatment
title Visible-Light-Responsive Graphitic Carbon Nitride: Rational Design and Photocatalytic Applications for Water Treatment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T06%3A59%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Visible-Light-Responsive%20Graphitic%20Carbon%20Nitride:%20Rational%20Design%20and%20Photocatalytic%20Applications%20for%20Water%20Treatment&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Zheng,%20Qinmin&rft.date=2016-12-06&rft.volume=50&rft.issue=23&rft.spage=12938&rft.epage=12948&rft.pages=12938-12948&rft.issn=0013-936X&rft.eissn=1520-5851&rft.coden=ESTHAG&rft_id=info:doi/10.1021/acs.est.6b02579&rft_dat=%3Cproquest_cross%3E4276379561%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1848091304&rft_id=info:pmid/27934277&rfr_iscdi=true