II. Species sensitivity distributions based on biomarkers and whole organism responses for integrated impact and risk assessment criteria

The aim of this paper is to bridge gaps between biomarker and whole organism responses related to oil based offshore discharges. These biomarker bridges will facilitate acceptance criteria for biomarker data linked to environmental risk assessment and translate biomarker results to higher order effe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Marine environmental research 2017-06, Vol.127, p.11-23
Hauptverfasser: Sanni, Steinar, Lyng, Emily, Pampanin, Daniela M., Smit, Mathijs G.D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 23
container_issue
container_start_page 11
container_title Marine environmental research
container_volume 127
creator Sanni, Steinar
Lyng, Emily
Pampanin, Daniela M.
Smit, Mathijs G.D.
description The aim of this paper is to bridge gaps between biomarker and whole organism responses related to oil based offshore discharges. These biomarker bridges will facilitate acceptance criteria for biomarker data linked to environmental risk assessment and translate biomarker results to higher order effects. Biomarker based species sensitivity distributions (SSDbiomarkers) have been constructed for relevant groups of biomarkers based on laboratory data from oil exposures. SSD curves express the fraction of species responding to different types of biomarkers. They have been connected to SSDs for whole organism responses (WORs) constructed in order to relate the SSDbiomarkers to animal fitness parameters that are commonly used in environmental risk assessment. The resulting SSD curves show that biomarkers and WORs can be linked through their potentially affected fraction of species (PAF) distributions, enhancing the capability to monitor field parameters with better correlation to impact and risk assessment criteria and providing improved chemical/biological integration. •Bridging gaps between biomarker and whole organism responses for oil based discharges.•Biomarker bridges enable acceptance criteria for biomarkers in environmental risk assessment.•Translation of biomarker results to higher order effects.•Biomarker based SSDs are constructed based on laboratory data from oil exposures.•Biomarkers and whole organism responses are linked via potentially affected fraction of species.
doi_str_mv 10.1016/j.marenvres.2016.12.003
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1854803946</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0141113616303476</els_id><sourcerecordid>1940500199</sourcerecordid><originalsourceid>FETCH-LOGICAL-c399t-c856805444998a3955f69d83745816a27341fbbeb9350b7e394ba33f3e396cec3</originalsourceid><addsrcrecordid>eNqFkc9u1DAQhy1ERZfCK4AlLlyS2rGdxMeq4s9KlTjQni3HmRRvN3bwOFv1EXhrXLb0wIWTR9b3mxnNR8h7zmrOeHu-q2ebIBwSYN2Uj5o3NWPiBdnwvtMVazR_STaMS15xLtpT8hpxxxhTHVevyGnTM8nbTm7Ir-22pt8XcB6QIgT02R98fqCjx5z8sGYfA9LBIow0Bjr4WCbfQUJqw0jvf8Q90JhubfA407LOUvDSaoqJ-pDhNtlckn5erMt_IsnjHbVYIJwhZOqSz5C8fUNOJrtHePv0npGbz5-uL79WV9--bC8vriontM6V61XbMyWl1Lq3Qis1tXrsRSdVz1vbdELyaRhg0EKxoQOh5WCFmESpWgdOnJGPx75Lij9XwGxmjw72exsgrmh4r2TPSqwt6Id_0F1cUyjbGa4lU4xxrQvVHSmXImKCySzJlyM9GM7Moy2zM8-2zKMtwxtTbJXku6f-6zDD-Jz7q6cAF0cAykEOHpLBIio4GH0Cl80Y_X-H_AZhxaxl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1940500199</pqid></control><display><type>article</type><title>II. Species sensitivity distributions based on biomarkers and whole organism responses for integrated impact and risk assessment criteria</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Sanni, Steinar ; Lyng, Emily ; Pampanin, Daniela M. ; Smit, Mathijs G.D.</creator><creatorcontrib>Sanni, Steinar ; Lyng, Emily ; Pampanin, Daniela M. ; Smit, Mathijs G.D.</creatorcontrib><description>The aim of this paper is to bridge gaps between biomarker and whole organism responses related to oil based offshore discharges. These biomarker bridges will facilitate acceptance criteria for biomarker data linked to environmental risk assessment and translate biomarker results to higher order effects. Biomarker based species sensitivity distributions (SSDbiomarkers) have been constructed for relevant groups of biomarkers based on laboratory data from oil exposures. SSD curves express the fraction of species responding to different types of biomarkers. They have been connected to SSDs for whole organism responses (WORs) constructed in order to relate the SSDbiomarkers to animal fitness parameters that are commonly used in environmental risk assessment. The resulting SSD curves show that biomarkers and WORs can be linked through their potentially affected fraction of species (PAF) distributions, enhancing the capability to monitor field parameters with better correlation to impact and risk assessment criteria and providing improved chemical/biological integration. •Bridging gaps between biomarker and whole organism responses for oil based discharges.•Biomarker bridges enable acceptance criteria for biomarkers in environmental risk assessment.•Translation of biomarker results to higher order effects.•Biomarker based SSDs are constructed based on laboratory data from oil exposures.•Biomarkers and whole organism responses are linked via potentially affected fraction of species.</description><identifier>ISSN: 0141-1136</identifier><identifier>EISSN: 1879-0291</identifier><identifier>DOI: 10.1016/j.marenvres.2016.12.003</identifier><identifier>PMID: 28041674</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Acceptance criteria ; Aquatic Organisms - physiology ; Biomarker ; Biomarkers ; Biomonitoring ; Bridges ; Ecological risk assessment ; Effects ; Environmental assessment ; Environmental impact ; Environmental Monitoring - methods ; Environmental risk ; Fitness ; Integration ; Offshore ; Offshore drilling rigs ; Oil ; Organisms ; Parameters ; Petroleum - analysis ; Petroleum hydrocarbons ; Petroleum Pollution - statistics &amp; numerical data ; Risk Assessment ; Sensitivity ; Species ; Species sensitivity distribution ; Species Specificity ; Studies ; Whole organism responses</subject><ispartof>Marine environmental research, 2017-06, Vol.127, p.11-23</ispartof><rights>2016 Elsevier Ltd</rights><rights>Copyright © 2016 Elsevier Ltd. All rights reserved.</rights><rights>Copyright Elsevier BV Jun 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c399t-c856805444998a3955f69d83745816a27341fbbeb9350b7e394ba33f3e396cec3</citedby><cites>FETCH-LOGICAL-c399t-c856805444998a3955f69d83745816a27341fbbeb9350b7e394ba33f3e396cec3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.marenvres.2016.12.003$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28041674$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sanni, Steinar</creatorcontrib><creatorcontrib>Lyng, Emily</creatorcontrib><creatorcontrib>Pampanin, Daniela M.</creatorcontrib><creatorcontrib>Smit, Mathijs G.D.</creatorcontrib><title>II. Species sensitivity distributions based on biomarkers and whole organism responses for integrated impact and risk assessment criteria</title><title>Marine environmental research</title><addtitle>Mar Environ Res</addtitle><description>The aim of this paper is to bridge gaps between biomarker and whole organism responses related to oil based offshore discharges. These biomarker bridges will facilitate acceptance criteria for biomarker data linked to environmental risk assessment and translate biomarker results to higher order effects. Biomarker based species sensitivity distributions (SSDbiomarkers) have been constructed for relevant groups of biomarkers based on laboratory data from oil exposures. SSD curves express the fraction of species responding to different types of biomarkers. They have been connected to SSDs for whole organism responses (WORs) constructed in order to relate the SSDbiomarkers to animal fitness parameters that are commonly used in environmental risk assessment. The resulting SSD curves show that biomarkers and WORs can be linked through their potentially affected fraction of species (PAF) distributions, enhancing the capability to monitor field parameters with better correlation to impact and risk assessment criteria and providing improved chemical/biological integration. •Bridging gaps between biomarker and whole organism responses for oil based discharges.•Biomarker bridges enable acceptance criteria for biomarkers in environmental risk assessment.•Translation of biomarker results to higher order effects.•Biomarker based SSDs are constructed based on laboratory data from oil exposures.•Biomarkers and whole organism responses are linked via potentially affected fraction of species.</description><subject>Acceptance criteria</subject><subject>Aquatic Organisms - physiology</subject><subject>Biomarker</subject><subject>Biomarkers</subject><subject>Biomonitoring</subject><subject>Bridges</subject><subject>Ecological risk assessment</subject><subject>Effects</subject><subject>Environmental assessment</subject><subject>Environmental impact</subject><subject>Environmental Monitoring - methods</subject><subject>Environmental risk</subject><subject>Fitness</subject><subject>Integration</subject><subject>Offshore</subject><subject>Offshore drilling rigs</subject><subject>Oil</subject><subject>Organisms</subject><subject>Parameters</subject><subject>Petroleum - analysis</subject><subject>Petroleum hydrocarbons</subject><subject>Petroleum Pollution - statistics &amp; numerical data</subject><subject>Risk Assessment</subject><subject>Sensitivity</subject><subject>Species</subject><subject>Species sensitivity distribution</subject><subject>Species Specificity</subject><subject>Studies</subject><subject>Whole organism responses</subject><issn>0141-1136</issn><issn>1879-0291</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc9u1DAQhy1ERZfCK4AlLlyS2rGdxMeq4s9KlTjQni3HmRRvN3bwOFv1EXhrXLb0wIWTR9b3mxnNR8h7zmrOeHu-q2ebIBwSYN2Uj5o3NWPiBdnwvtMVazR_STaMS15xLtpT8hpxxxhTHVevyGnTM8nbTm7Ir-22pt8XcB6QIgT02R98fqCjx5z8sGYfA9LBIow0Bjr4WCbfQUJqw0jvf8Q90JhubfA407LOUvDSaoqJ-pDhNtlckn5erMt_IsnjHbVYIJwhZOqSz5C8fUNOJrtHePv0npGbz5-uL79WV9--bC8vriontM6V61XbMyWl1Lq3Qis1tXrsRSdVz1vbdELyaRhg0EKxoQOh5WCFmESpWgdOnJGPx75Lij9XwGxmjw72exsgrmh4r2TPSqwt6Id_0F1cUyjbGa4lU4xxrQvVHSmXImKCySzJlyM9GM7Moy2zM8-2zKMtwxtTbJXku6f-6zDD-Jz7q6cAF0cAykEOHpLBIio4GH0Cl80Y_X-H_AZhxaxl</recordid><startdate>20170601</startdate><enddate>20170601</enddate><creator>Sanni, Steinar</creator><creator>Lyng, Emily</creator><creator>Pampanin, Daniela M.</creator><creator>Smit, Mathijs G.D.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7ST</scope><scope>7T5</scope><scope>7TN</scope><scope>7U7</scope><scope>C1K</scope><scope>F1W</scope><scope>H94</scope><scope>M7N</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>20170601</creationdate><title>II. Species sensitivity distributions based on biomarkers and whole organism responses for integrated impact and risk assessment criteria</title><author>Sanni, Steinar ; Lyng, Emily ; Pampanin, Daniela M. ; Smit, Mathijs G.D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c399t-c856805444998a3955f69d83745816a27341fbbeb9350b7e394ba33f3e396cec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Acceptance criteria</topic><topic>Aquatic Organisms - physiology</topic><topic>Biomarker</topic><topic>Biomarkers</topic><topic>Biomonitoring</topic><topic>Bridges</topic><topic>Ecological risk assessment</topic><topic>Effects</topic><topic>Environmental assessment</topic><topic>Environmental impact</topic><topic>Environmental Monitoring - methods</topic><topic>Environmental risk</topic><topic>Fitness</topic><topic>Integration</topic><topic>Offshore</topic><topic>Offshore drilling rigs</topic><topic>Oil</topic><topic>Organisms</topic><topic>Parameters</topic><topic>Petroleum - analysis</topic><topic>Petroleum hydrocarbons</topic><topic>Petroleum Pollution - statistics &amp; numerical data</topic><topic>Risk Assessment</topic><topic>Sensitivity</topic><topic>Species</topic><topic>Species sensitivity distribution</topic><topic>Species Specificity</topic><topic>Studies</topic><topic>Whole organism responses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sanni, Steinar</creatorcontrib><creatorcontrib>Lyng, Emily</creatorcontrib><creatorcontrib>Pampanin, Daniela M.</creatorcontrib><creatorcontrib>Smit, Mathijs G.D.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Marine environmental research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sanni, Steinar</au><au>Lyng, Emily</au><au>Pampanin, Daniela M.</au><au>Smit, Mathijs G.D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>II. Species sensitivity distributions based on biomarkers and whole organism responses for integrated impact and risk assessment criteria</atitle><jtitle>Marine environmental research</jtitle><addtitle>Mar Environ Res</addtitle><date>2017-06-01</date><risdate>2017</risdate><volume>127</volume><spage>11</spage><epage>23</epage><pages>11-23</pages><issn>0141-1136</issn><eissn>1879-0291</eissn><abstract>The aim of this paper is to bridge gaps between biomarker and whole organism responses related to oil based offshore discharges. These biomarker bridges will facilitate acceptance criteria for biomarker data linked to environmental risk assessment and translate biomarker results to higher order effects. Biomarker based species sensitivity distributions (SSDbiomarkers) have been constructed for relevant groups of biomarkers based on laboratory data from oil exposures. SSD curves express the fraction of species responding to different types of biomarkers. They have been connected to SSDs for whole organism responses (WORs) constructed in order to relate the SSDbiomarkers to animal fitness parameters that are commonly used in environmental risk assessment. The resulting SSD curves show that biomarkers and WORs can be linked through their potentially affected fraction of species (PAF) distributions, enhancing the capability to monitor field parameters with better correlation to impact and risk assessment criteria and providing improved chemical/biological integration. •Bridging gaps between biomarker and whole organism responses for oil based discharges.•Biomarker bridges enable acceptance criteria for biomarkers in environmental risk assessment.•Translation of biomarker results to higher order effects.•Biomarker based SSDs are constructed based on laboratory data from oil exposures.•Biomarkers and whole organism responses are linked via potentially affected fraction of species.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>28041674</pmid><doi>10.1016/j.marenvres.2016.12.003</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0141-1136
ispartof Marine environmental research, 2017-06, Vol.127, p.11-23
issn 0141-1136
1879-0291
language eng
recordid cdi_proquest_miscellaneous_1854803946
source MEDLINE; Access via ScienceDirect (Elsevier)
subjects Acceptance criteria
Aquatic Organisms - physiology
Biomarker
Biomarkers
Biomonitoring
Bridges
Ecological risk assessment
Effects
Environmental assessment
Environmental impact
Environmental Monitoring - methods
Environmental risk
Fitness
Integration
Offshore
Offshore drilling rigs
Oil
Organisms
Parameters
Petroleum - analysis
Petroleum hydrocarbons
Petroleum Pollution - statistics & numerical data
Risk Assessment
Sensitivity
Species
Species sensitivity distribution
Species Specificity
Studies
Whole organism responses
title II. Species sensitivity distributions based on biomarkers and whole organism responses for integrated impact and risk assessment criteria
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T18%3A35%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=II.%20Species%20sensitivity%20distributions%20based%20on%20biomarkers%20and%20whole%20organism%20responses%20for%20integrated%20impact%20and%20risk%20assessment%20criteria&rft.jtitle=Marine%20environmental%20research&rft.au=Sanni,%20Steinar&rft.date=2017-06-01&rft.volume=127&rft.spage=11&rft.epage=23&rft.pages=11-23&rft.issn=0141-1136&rft.eissn=1879-0291&rft_id=info:doi/10.1016/j.marenvres.2016.12.003&rft_dat=%3Cproquest_cross%3E1940500199%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1940500199&rft_id=info:pmid/28041674&rft_els_id=S0141113616303476&rfr_iscdi=true