Delineating stages of erythropoiesis using imaging flow cytometry

[Display omitted] •Imaging flow cytometry (IFC) can delineate seven erythroid populations in bone marrow.•IFC-based erythroid intermediates correlate with histologically-defined intermediates.•Intermediate erythroid precursors are not distinguished by CD71 or CD44 staining.•Better separation of eryt...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Methods (San Diego, Calif.) Calif.), 2017-01, Vol.112, p.68-74
Hauptverfasser: McGrath, K.E., Catherman, S.C., Palis, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 74
container_issue
container_start_page 68
container_title Methods (San Diego, Calif.)
container_volume 112
creator McGrath, K.E.
Catherman, S.C.
Palis, J.
description [Display omitted] •Imaging flow cytometry (IFC) can delineate seven erythroid populations in bone marrow.•IFC-based erythroid intermediates correlate with histologically-defined intermediates.•Intermediate erythroid precursors are not distinguished by CD71 or CD44 staining.•Better separation of erythroid precursors is achieved using cell and nuclear size.•IFC can address challenges of limited cell markers and gating on a continuum. Adult humans need to make 2.5million red blood cells (RBCs) every second to maintain a steady state level of 25trillion circulating RBCs. Understanding normal erythropoiesis as well as diseases that afflict the erythron, such as genetic anemias, hyperproliferative disorders, and myelodysplastic syndromes, requires a robust method to delineate erythropoietic intermediates. In order to apply the power of flow cytometry to these studies, challenges of limited immunophenotypic markers, incorporation of significant changes in morphology, and maturational changes that occur along a continuum need to be met. Imaging flow cytometry (IFC) provides a solution to address these challenges. Integration of changes in immunophenotype, loss of RNA (ribosomes), and enucleation, with morphological characteristics of cell and nuclear size, can be used to delineate erythroblasts that correlate with classical histological classifications. A protocol is described that demonstrates the basic approaches of staining panel selection, mask generation and selection of features to best sequentially refine erythroid intermediates and remove contaminating cells with overlapping immunophenotype. Ultimately erythroid cells in the murine bone marrow are divided into seven sub-populations using IFC including four erythroblasts (pro-, basophilic, polychromatophilic and orthochromatic), the pyrenocyte, which contains the eliminated nucleus, the enucleated reticulocyte and the mature RBC.
doi_str_mv 10.1016/j.ymeth.2016.08.012
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1854801990</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1046202316302675</els_id><sourcerecordid>1854801990</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-5bf8fe8e79b45a5826c82ac6a16be571976460561ebe68e9166fee8b9644ac3c3</originalsourceid><addsrcrecordid>eNp9kM9PwyAUx4nROJ3-BSamRy-tQFsKBw_L_Jks8aJnQtnrxtKOCVTT_17qpkdP7xE-jy_vg9AVwRnBhN1usqGDsM5oPGSYZ5jQI3RGsChTQXJ8PPYFSymm-QSde7_BOCIVP0UTWpWcElqcodk9tGYLKpjtKvFBrcAntknADWHt7M4a8MYnvR-vTadWY21a-5XoIdgY74YLdNKo1sPloU7R--PD2_w5Xbw-vcxni1QXVIS0rBveAIdK1EWpYjzTnCrNFGE1lBURFSsYLhmBGhgHQRhrAHgtWFEonet8im727-6c_ejBB9kZr6Ft1RZs7yXhZcExEQJHNN-j2lnvHTRy5-Ln3SAJlqM7uZE_7uToTmIuo5g4dX0I6OsOln8zv7IicLcHIK75acBJrw1sNSyNAx3k0pp_A74BrgmBiQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1854801990</pqid></control><display><type>article</type><title>Delineating stages of erythropoiesis using imaging flow cytometry</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>McGrath, K.E. ; Catherman, S.C. ; Palis, J.</creator><creatorcontrib>McGrath, K.E. ; Catherman, S.C. ; Palis, J.</creatorcontrib><description>[Display omitted] •Imaging flow cytometry (IFC) can delineate seven erythroid populations in bone marrow.•IFC-based erythroid intermediates correlate with histologically-defined intermediates.•Intermediate erythroid precursors are not distinguished by CD71 or CD44 staining.•Better separation of erythroid precursors is achieved using cell and nuclear size.•IFC can address challenges of limited cell markers and gating on a continuum. Adult humans need to make 2.5million red blood cells (RBCs) every second to maintain a steady state level of 25trillion circulating RBCs. Understanding normal erythropoiesis as well as diseases that afflict the erythron, such as genetic anemias, hyperproliferative disorders, and myelodysplastic syndromes, requires a robust method to delineate erythropoietic intermediates. In order to apply the power of flow cytometry to these studies, challenges of limited immunophenotypic markers, incorporation of significant changes in morphology, and maturational changes that occur along a continuum need to be met. Imaging flow cytometry (IFC) provides a solution to address these challenges. Integration of changes in immunophenotype, loss of RNA (ribosomes), and enucleation, with morphological characteristics of cell and nuclear size, can be used to delineate erythroblasts that correlate with classical histological classifications. A protocol is described that demonstrates the basic approaches of staining panel selection, mask generation and selection of features to best sequentially refine erythroid intermediates and remove contaminating cells with overlapping immunophenotype. Ultimately erythroid cells in the murine bone marrow are divided into seven sub-populations using IFC including four erythroblasts (pro-, basophilic, polychromatophilic and orthochromatic), the pyrenocyte, which contains the eliminated nucleus, the enucleated reticulocyte and the mature RBC.</description><identifier>ISSN: 1046-2023</identifier><identifier>EISSN: 1095-9130</identifier><identifier>DOI: 10.1016/j.ymeth.2016.08.012</identifier><identifier>PMID: 27582124</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Biomarkers - metabolism ; Bone marrow ; Bone Marrow Cells - classification ; Bone Marrow Cells - cytology ; Bone Marrow Cells - metabolism ; Cell cycle ; Cell Cycle - genetics ; Cell Differentiation ; Cell Lineage - genetics ; Cell Nucleus - ultrastructure ; Erythroblasts - cytology ; Erythroblasts - metabolism ; Erythrocytes - cytology ; Erythrocytes - metabolism ; Erythroid ; Erythropoiesis - genetics ; Flow Cytometry - instrumentation ; Flow Cytometry - methods ; Humans ; Image Cytometry - instrumentation ; Image Cytometry - methods ; ImageStream ; Imaging flow cytometry ; Mice ; Primary Cell Culture ; RBC ; Reticulocytes - cytology ; Reticulocytes - metabolism ; Ribosomes - ultrastructure ; Staining and Labeling - methods</subject><ispartof>Methods (San Diego, Calif.), 2017-01, Vol.112, p.68-74</ispartof><rights>2016 Elsevier Inc.</rights><rights>Copyright © 2016 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-5bf8fe8e79b45a5826c82ac6a16be571976460561ebe68e9166fee8b9644ac3c3</citedby><cites>FETCH-LOGICAL-c429t-5bf8fe8e79b45a5826c82ac6a16be571976460561ebe68e9166fee8b9644ac3c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ymeth.2016.08.012$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27582124$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>McGrath, K.E.</creatorcontrib><creatorcontrib>Catherman, S.C.</creatorcontrib><creatorcontrib>Palis, J.</creatorcontrib><title>Delineating stages of erythropoiesis using imaging flow cytometry</title><title>Methods (San Diego, Calif.)</title><addtitle>Methods</addtitle><description>[Display omitted] •Imaging flow cytometry (IFC) can delineate seven erythroid populations in bone marrow.•IFC-based erythroid intermediates correlate with histologically-defined intermediates.•Intermediate erythroid precursors are not distinguished by CD71 or CD44 staining.•Better separation of erythroid precursors is achieved using cell and nuclear size.•IFC can address challenges of limited cell markers and gating on a continuum. Adult humans need to make 2.5million red blood cells (RBCs) every second to maintain a steady state level of 25trillion circulating RBCs. Understanding normal erythropoiesis as well as diseases that afflict the erythron, such as genetic anemias, hyperproliferative disorders, and myelodysplastic syndromes, requires a robust method to delineate erythropoietic intermediates. In order to apply the power of flow cytometry to these studies, challenges of limited immunophenotypic markers, incorporation of significant changes in morphology, and maturational changes that occur along a continuum need to be met. Imaging flow cytometry (IFC) provides a solution to address these challenges. Integration of changes in immunophenotype, loss of RNA (ribosomes), and enucleation, with morphological characteristics of cell and nuclear size, can be used to delineate erythroblasts that correlate with classical histological classifications. A protocol is described that demonstrates the basic approaches of staining panel selection, mask generation and selection of features to best sequentially refine erythroid intermediates and remove contaminating cells with overlapping immunophenotype. Ultimately erythroid cells in the murine bone marrow are divided into seven sub-populations using IFC including four erythroblasts (pro-, basophilic, polychromatophilic and orthochromatic), the pyrenocyte, which contains the eliminated nucleus, the enucleated reticulocyte and the mature RBC.</description><subject>Animals</subject><subject>Biomarkers - metabolism</subject><subject>Bone marrow</subject><subject>Bone Marrow Cells - classification</subject><subject>Bone Marrow Cells - cytology</subject><subject>Bone Marrow Cells - metabolism</subject><subject>Cell cycle</subject><subject>Cell Cycle - genetics</subject><subject>Cell Differentiation</subject><subject>Cell Lineage - genetics</subject><subject>Cell Nucleus - ultrastructure</subject><subject>Erythroblasts - cytology</subject><subject>Erythroblasts - metabolism</subject><subject>Erythrocytes - cytology</subject><subject>Erythrocytes - metabolism</subject><subject>Erythroid</subject><subject>Erythropoiesis - genetics</subject><subject>Flow Cytometry - instrumentation</subject><subject>Flow Cytometry - methods</subject><subject>Humans</subject><subject>Image Cytometry - instrumentation</subject><subject>Image Cytometry - methods</subject><subject>ImageStream</subject><subject>Imaging flow cytometry</subject><subject>Mice</subject><subject>Primary Cell Culture</subject><subject>RBC</subject><subject>Reticulocytes - cytology</subject><subject>Reticulocytes - metabolism</subject><subject>Ribosomes - ultrastructure</subject><subject>Staining and Labeling - methods</subject><issn>1046-2023</issn><issn>1095-9130</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kM9PwyAUx4nROJ3-BSamRy-tQFsKBw_L_Jks8aJnQtnrxtKOCVTT_17qpkdP7xE-jy_vg9AVwRnBhN1usqGDsM5oPGSYZ5jQI3RGsChTQXJ8PPYFSymm-QSde7_BOCIVP0UTWpWcElqcodk9tGYLKpjtKvFBrcAntknADWHt7M4a8MYnvR-vTadWY21a-5XoIdgY74YLdNKo1sPloU7R--PD2_w5Xbw-vcxni1QXVIS0rBveAIdK1EWpYjzTnCrNFGE1lBURFSsYLhmBGhgHQRhrAHgtWFEonet8im727-6c_ejBB9kZr6Ft1RZs7yXhZcExEQJHNN-j2lnvHTRy5-Ln3SAJlqM7uZE_7uToTmIuo5g4dX0I6OsOln8zv7IicLcHIK75acBJrw1sNSyNAx3k0pp_A74BrgmBiQ</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>McGrath, K.E.</creator><creator>Catherman, S.C.</creator><creator>Palis, J.</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20170101</creationdate><title>Delineating stages of erythropoiesis using imaging flow cytometry</title><author>McGrath, K.E. ; Catherman, S.C. ; Palis, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-5bf8fe8e79b45a5826c82ac6a16be571976460561ebe68e9166fee8b9644ac3c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Animals</topic><topic>Biomarkers - metabolism</topic><topic>Bone marrow</topic><topic>Bone Marrow Cells - classification</topic><topic>Bone Marrow Cells - cytology</topic><topic>Bone Marrow Cells - metabolism</topic><topic>Cell cycle</topic><topic>Cell Cycle - genetics</topic><topic>Cell Differentiation</topic><topic>Cell Lineage - genetics</topic><topic>Cell Nucleus - ultrastructure</topic><topic>Erythroblasts - cytology</topic><topic>Erythroblasts - metabolism</topic><topic>Erythrocytes - cytology</topic><topic>Erythrocytes - metabolism</topic><topic>Erythroid</topic><topic>Erythropoiesis - genetics</topic><topic>Flow Cytometry - instrumentation</topic><topic>Flow Cytometry - methods</topic><topic>Humans</topic><topic>Image Cytometry - instrumentation</topic><topic>Image Cytometry - methods</topic><topic>ImageStream</topic><topic>Imaging flow cytometry</topic><topic>Mice</topic><topic>Primary Cell Culture</topic><topic>RBC</topic><topic>Reticulocytes - cytology</topic><topic>Reticulocytes - metabolism</topic><topic>Ribosomes - ultrastructure</topic><topic>Staining and Labeling - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McGrath, K.E.</creatorcontrib><creatorcontrib>Catherman, S.C.</creatorcontrib><creatorcontrib>Palis, J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Methods (San Diego, Calif.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McGrath, K.E.</au><au>Catherman, S.C.</au><au>Palis, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Delineating stages of erythropoiesis using imaging flow cytometry</atitle><jtitle>Methods (San Diego, Calif.)</jtitle><addtitle>Methods</addtitle><date>2017-01-01</date><risdate>2017</risdate><volume>112</volume><spage>68</spage><epage>74</epage><pages>68-74</pages><issn>1046-2023</issn><eissn>1095-9130</eissn><abstract>[Display omitted] •Imaging flow cytometry (IFC) can delineate seven erythroid populations in bone marrow.•IFC-based erythroid intermediates correlate with histologically-defined intermediates.•Intermediate erythroid precursors are not distinguished by CD71 or CD44 staining.•Better separation of erythroid precursors is achieved using cell and nuclear size.•IFC can address challenges of limited cell markers and gating on a continuum. Adult humans need to make 2.5million red blood cells (RBCs) every second to maintain a steady state level of 25trillion circulating RBCs. Understanding normal erythropoiesis as well as diseases that afflict the erythron, such as genetic anemias, hyperproliferative disorders, and myelodysplastic syndromes, requires a robust method to delineate erythropoietic intermediates. In order to apply the power of flow cytometry to these studies, challenges of limited immunophenotypic markers, incorporation of significant changes in morphology, and maturational changes that occur along a continuum need to be met. Imaging flow cytometry (IFC) provides a solution to address these challenges. Integration of changes in immunophenotype, loss of RNA (ribosomes), and enucleation, with morphological characteristics of cell and nuclear size, can be used to delineate erythroblasts that correlate with classical histological classifications. A protocol is described that demonstrates the basic approaches of staining panel selection, mask generation and selection of features to best sequentially refine erythroid intermediates and remove contaminating cells with overlapping immunophenotype. Ultimately erythroid cells in the murine bone marrow are divided into seven sub-populations using IFC including four erythroblasts (pro-, basophilic, polychromatophilic and orthochromatic), the pyrenocyte, which contains the eliminated nucleus, the enucleated reticulocyte and the mature RBC.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>27582124</pmid><doi>10.1016/j.ymeth.2016.08.012</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1046-2023
ispartof Methods (San Diego, Calif.), 2017-01, Vol.112, p.68-74
issn 1046-2023
1095-9130
language eng
recordid cdi_proquest_miscellaneous_1854801990
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Animals
Biomarkers - metabolism
Bone marrow
Bone Marrow Cells - classification
Bone Marrow Cells - cytology
Bone Marrow Cells - metabolism
Cell cycle
Cell Cycle - genetics
Cell Differentiation
Cell Lineage - genetics
Cell Nucleus - ultrastructure
Erythroblasts - cytology
Erythroblasts - metabolism
Erythrocytes - cytology
Erythrocytes - metabolism
Erythroid
Erythropoiesis - genetics
Flow Cytometry - instrumentation
Flow Cytometry - methods
Humans
Image Cytometry - instrumentation
Image Cytometry - methods
ImageStream
Imaging flow cytometry
Mice
Primary Cell Culture
RBC
Reticulocytes - cytology
Reticulocytes - metabolism
Ribosomes - ultrastructure
Staining and Labeling - methods
title Delineating stages of erythropoiesis using imaging flow cytometry
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T09%3A45%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Delineating%20stages%20of%20erythropoiesis%20using%20imaging%20flow%20cytometry&rft.jtitle=Methods%20(San%20Diego,%20Calif.)&rft.au=McGrath,%20K.E.&rft.date=2017-01-01&rft.volume=112&rft.spage=68&rft.epage=74&rft.pages=68-74&rft.issn=1046-2023&rft.eissn=1095-9130&rft_id=info:doi/10.1016/j.ymeth.2016.08.012&rft_dat=%3Cproquest_cross%3E1854801990%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1854801990&rft_id=info:pmid/27582124&rft_els_id=S1046202316302675&rfr_iscdi=true