Fatigue responses of the human cervical spine intervertebral discs
Numerous studies have been conducted since more than fifty years to understand the behavior of the human lumbar spine under fatigue loading. Applications have been largely driven by low back pain and human body vibration problems. The human neck also sustains fatigue loading in certain type of civil...
Gespeichert in:
Veröffentlicht in: | Journal of the mechanical behavior of biomedical materials 2017-05, Vol.69, p.30-38 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 38 |
---|---|
container_issue | |
container_start_page | 30 |
container_title | Journal of the mechanical behavior of biomedical materials |
container_volume | 69 |
creator | Yoganandan, Narayan Umale, Sagar Stemper, Brain Snyder, Bryan |
description | Numerous studies have been conducted since more than fifty years to understand the behavior of the human lumbar spine under fatigue loading. Applications have been largely driven by low back pain and human body vibration problems. The human neck also sustains fatigue loading in certain type of civilian occupational and military operational activities, and research is very limited in this area. Being a visco-elastic structure, it is important to determine the stress-relaxation properties of the human cervical spine intervertebral discs to enable accurate simulations of these structures in stress-analysis models. While finite element models have the ability to incorporate viscoelastic material definitions, data specific to the cervical spine are limited. The present study was conducted to determine these properties and understand the responses of the human lower cervical spine discs under large number of cyclic loads in the axial compression mode. Eight disc segments consisting of the adjacent vertebral bodies along with the longitudinal ligaments were subjected to compression, followed by 10,000 cycles of loading at 2 or 4Hz frequency by limiting the axial load to approximately 150 N, and subsequent to resting period, subjected to compression to extract the stress-relaxation properties using the quasi-linear viscoelastic (QLV) material model. The coefficients of the model and disc displacements as a function of cycles and loading frequency are presented. The disc responses demonstrated a plateauing effect after the first 2000 to 4000 cycles, which were highly nonlinear. The paper compares these responses with the “work hardening” phenomenon proposed in clinical literature for the lumbar spine to explain the fatigue behavior of the discs. The quantitative results in terms of QLV coefficients can serve as inputs to complex finite element models of the cervical spine to delineate the local and internal load-sharing responses of the disc segment. |
doi_str_mv | 10.1016/j.jmbbm.2016.11.026 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1854619593</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1751616116304179</els_id><sourcerecordid>1854619593</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-520d8ad2fc643fe0a080eaa05552fb23830b23dee7b739fa90dfd5be40ddfefa3</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EolD4BUgoI0vCOa5TZ2CAigJSJRaYLcc-U1f5wk4q8e9xaWFkuS-9d6_uIeSKQkaBFrebbNNUVZPlsckozSAvjsgZFXORAhVwHOs5p2lBCzoh5yFsAAoAIU7JJBfAGGfsjDws1eA-Rkw8hr5rA4aks8mwxmQ9NqpNNPqt06pOQu9aTFw7xAH6ASsfh8YFHS7IiVV1wMtDnpL35ePb4jldvT69LO5XqWa8HFKegxHK5FYXM2YRFAhApYBzntsqZ4JBjAZxXs1ZaVUJxhpe4QyMsWgVm5Kb_d3ed58jhkE20R7rWrXYjUFSwWcFLXnJopTtpdp3IXi0sveuUf5LUpA7eHIjf-DJHTxJqYzw4tb1wWCsGjR_O7-0ouBuL8D45tahl0E7bDUa51EP0nTuX4NvWkaCNw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1854619593</pqid></control><display><type>article</type><title>Fatigue responses of the human cervical spine intervertebral discs</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Yoganandan, Narayan ; Umale, Sagar ; Stemper, Brain ; Snyder, Bryan</creator><creatorcontrib>Yoganandan, Narayan ; Umale, Sagar ; Stemper, Brain ; Snyder, Bryan</creatorcontrib><description>Numerous studies have been conducted since more than fifty years to understand the behavior of the human lumbar spine under fatigue loading. Applications have been largely driven by low back pain and human body vibration problems. The human neck also sustains fatigue loading in certain type of civilian occupational and military operational activities, and research is very limited in this area. Being a visco-elastic structure, it is important to determine the stress-relaxation properties of the human cervical spine intervertebral discs to enable accurate simulations of these structures in stress-analysis models. While finite element models have the ability to incorporate viscoelastic material definitions, data specific to the cervical spine are limited. The present study was conducted to determine these properties and understand the responses of the human lower cervical spine discs under large number of cyclic loads in the axial compression mode. Eight disc segments consisting of the adjacent vertebral bodies along with the longitudinal ligaments were subjected to compression, followed by 10,000 cycles of loading at 2 or 4Hz frequency by limiting the axial load to approximately 150 N, and subsequent to resting period, subjected to compression to extract the stress-relaxation properties using the quasi-linear viscoelastic (QLV) material model. The coefficients of the model and disc displacements as a function of cycles and loading frequency are presented. The disc responses demonstrated a plateauing effect after the first 2000 to 4000 cycles, which were highly nonlinear. The paper compares these responses with the “work hardening” phenomenon proposed in clinical literature for the lumbar spine to explain the fatigue behavior of the discs. The quantitative results in terms of QLV coefficients can serve as inputs to complex finite element models of the cervical spine to delineate the local and internal load-sharing responses of the disc segment.</description><identifier>ISSN: 1751-6161</identifier><identifier>EISSN: 1878-0180</identifier><identifier>DOI: 10.1016/j.jmbbm.2016.11.026</identifier><identifier>PMID: 28033533</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Biomechanical Phenomena ; Cervical Vertebrae - physiopathology ; Cyclic loading ; Disc ; Finite Element Analysis ; Finite element model ; Human cervical spine ; Humans ; Internal mechanics ; Intervertebral Disc - physiopathology ; Longitudinal Ligaments - physiopathology ; Stress, Mechanical ; Viscoelastic response ; Viscosity ; Weight-Bearing</subject><ispartof>Journal of the mechanical behavior of biomedical materials, 2017-05, Vol.69, p.30-38</ispartof><rights>2016</rights><rights>Published by Elsevier Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-520d8ad2fc643fe0a080eaa05552fb23830b23dee7b739fa90dfd5be40ddfefa3</citedby><cites>FETCH-LOGICAL-c359t-520d8ad2fc643fe0a080eaa05552fb23830b23dee7b739fa90dfd5be40ddfefa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jmbbm.2016.11.026$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28033533$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yoganandan, Narayan</creatorcontrib><creatorcontrib>Umale, Sagar</creatorcontrib><creatorcontrib>Stemper, Brain</creatorcontrib><creatorcontrib>Snyder, Bryan</creatorcontrib><title>Fatigue responses of the human cervical spine intervertebral discs</title><title>Journal of the mechanical behavior of biomedical materials</title><addtitle>J Mech Behav Biomed Mater</addtitle><description>Numerous studies have been conducted since more than fifty years to understand the behavior of the human lumbar spine under fatigue loading. Applications have been largely driven by low back pain and human body vibration problems. The human neck also sustains fatigue loading in certain type of civilian occupational and military operational activities, and research is very limited in this area. Being a visco-elastic structure, it is important to determine the stress-relaxation properties of the human cervical spine intervertebral discs to enable accurate simulations of these structures in stress-analysis models. While finite element models have the ability to incorporate viscoelastic material definitions, data specific to the cervical spine are limited. The present study was conducted to determine these properties and understand the responses of the human lower cervical spine discs under large number of cyclic loads in the axial compression mode. Eight disc segments consisting of the adjacent vertebral bodies along with the longitudinal ligaments were subjected to compression, followed by 10,000 cycles of loading at 2 or 4Hz frequency by limiting the axial load to approximately 150 N, and subsequent to resting period, subjected to compression to extract the stress-relaxation properties using the quasi-linear viscoelastic (QLV) material model. The coefficients of the model and disc displacements as a function of cycles and loading frequency are presented. The disc responses demonstrated a plateauing effect after the first 2000 to 4000 cycles, which were highly nonlinear. The paper compares these responses with the “work hardening” phenomenon proposed in clinical literature for the lumbar spine to explain the fatigue behavior of the discs. The quantitative results in terms of QLV coefficients can serve as inputs to complex finite element models of the cervical spine to delineate the local and internal load-sharing responses of the disc segment.</description><subject>Biomechanical Phenomena</subject><subject>Cervical Vertebrae - physiopathology</subject><subject>Cyclic loading</subject><subject>Disc</subject><subject>Finite Element Analysis</subject><subject>Finite element model</subject><subject>Human cervical spine</subject><subject>Humans</subject><subject>Internal mechanics</subject><subject>Intervertebral Disc - physiopathology</subject><subject>Longitudinal Ligaments - physiopathology</subject><subject>Stress, Mechanical</subject><subject>Viscoelastic response</subject><subject>Viscosity</subject><subject>Weight-Bearing</subject><issn>1751-6161</issn><issn>1878-0180</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kD1PwzAQhi0EolD4BUgoI0vCOa5TZ2CAigJSJRaYLcc-U1f5wk4q8e9xaWFkuS-9d6_uIeSKQkaBFrebbNNUVZPlsckozSAvjsgZFXORAhVwHOs5p2lBCzoh5yFsAAoAIU7JJBfAGGfsjDws1eA-Rkw8hr5rA4aks8mwxmQ9NqpNNPqt06pOQu9aTFw7xAH6ASsfh8YFHS7IiVV1wMtDnpL35ePb4jldvT69LO5XqWa8HFKegxHK5FYXM2YRFAhApYBzntsqZ4JBjAZxXs1ZaVUJxhpe4QyMsWgVm5Kb_d3ed58jhkE20R7rWrXYjUFSwWcFLXnJopTtpdp3IXi0sveuUf5LUpA7eHIjf-DJHTxJqYzw4tb1wWCsGjR_O7-0ouBuL8D45tahl0E7bDUa51EP0nTuX4NvWkaCNw</recordid><startdate>201705</startdate><enddate>201705</enddate><creator>Yoganandan, Narayan</creator><creator>Umale, Sagar</creator><creator>Stemper, Brain</creator><creator>Snyder, Bryan</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201705</creationdate><title>Fatigue responses of the human cervical spine intervertebral discs</title><author>Yoganandan, Narayan ; Umale, Sagar ; Stemper, Brain ; Snyder, Bryan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-520d8ad2fc643fe0a080eaa05552fb23830b23dee7b739fa90dfd5be40ddfefa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Biomechanical Phenomena</topic><topic>Cervical Vertebrae - physiopathology</topic><topic>Cyclic loading</topic><topic>Disc</topic><topic>Finite Element Analysis</topic><topic>Finite element model</topic><topic>Human cervical spine</topic><topic>Humans</topic><topic>Internal mechanics</topic><topic>Intervertebral Disc - physiopathology</topic><topic>Longitudinal Ligaments - physiopathology</topic><topic>Stress, Mechanical</topic><topic>Viscoelastic response</topic><topic>Viscosity</topic><topic>Weight-Bearing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yoganandan, Narayan</creatorcontrib><creatorcontrib>Umale, Sagar</creatorcontrib><creatorcontrib>Stemper, Brain</creatorcontrib><creatorcontrib>Snyder, Bryan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the mechanical behavior of biomedical materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yoganandan, Narayan</au><au>Umale, Sagar</au><au>Stemper, Brain</au><au>Snyder, Bryan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fatigue responses of the human cervical spine intervertebral discs</atitle><jtitle>Journal of the mechanical behavior of biomedical materials</jtitle><addtitle>J Mech Behav Biomed Mater</addtitle><date>2017-05</date><risdate>2017</risdate><volume>69</volume><spage>30</spage><epage>38</epage><pages>30-38</pages><issn>1751-6161</issn><eissn>1878-0180</eissn><abstract>Numerous studies have been conducted since more than fifty years to understand the behavior of the human lumbar spine under fatigue loading. Applications have been largely driven by low back pain and human body vibration problems. The human neck also sustains fatigue loading in certain type of civilian occupational and military operational activities, and research is very limited in this area. Being a visco-elastic structure, it is important to determine the stress-relaxation properties of the human cervical spine intervertebral discs to enable accurate simulations of these structures in stress-analysis models. While finite element models have the ability to incorporate viscoelastic material definitions, data specific to the cervical spine are limited. The present study was conducted to determine these properties and understand the responses of the human lower cervical spine discs under large number of cyclic loads in the axial compression mode. Eight disc segments consisting of the adjacent vertebral bodies along with the longitudinal ligaments were subjected to compression, followed by 10,000 cycles of loading at 2 or 4Hz frequency by limiting the axial load to approximately 150 N, and subsequent to resting period, subjected to compression to extract the stress-relaxation properties using the quasi-linear viscoelastic (QLV) material model. The coefficients of the model and disc displacements as a function of cycles and loading frequency are presented. The disc responses demonstrated a plateauing effect after the first 2000 to 4000 cycles, which were highly nonlinear. The paper compares these responses with the “work hardening” phenomenon proposed in clinical literature for the lumbar spine to explain the fatigue behavior of the discs. The quantitative results in terms of QLV coefficients can serve as inputs to complex finite element models of the cervical spine to delineate the local and internal load-sharing responses of the disc segment.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>28033533</pmid><doi>10.1016/j.jmbbm.2016.11.026</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1751-6161 |
ispartof | Journal of the mechanical behavior of biomedical materials, 2017-05, Vol.69, p.30-38 |
issn | 1751-6161 1878-0180 |
language | eng |
recordid | cdi_proquest_miscellaneous_1854619593 |
source | MEDLINE; Access via ScienceDirect (Elsevier) |
subjects | Biomechanical Phenomena Cervical Vertebrae - physiopathology Cyclic loading Disc Finite Element Analysis Finite element model Human cervical spine Humans Internal mechanics Intervertebral Disc - physiopathology Longitudinal Ligaments - physiopathology Stress, Mechanical Viscoelastic response Viscosity Weight-Bearing |
title | Fatigue responses of the human cervical spine intervertebral discs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T19%3A07%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fatigue%20responses%20of%20the%20human%20cervical%20spine%20intervertebral%20discs&rft.jtitle=Journal%20of%20the%20mechanical%20behavior%20of%20biomedical%20materials&rft.au=Yoganandan,%20Narayan&rft.date=2017-05&rft.volume=69&rft.spage=30&rft.epage=38&rft.pages=30-38&rft.issn=1751-6161&rft.eissn=1878-0180&rft_id=info:doi/10.1016/j.jmbbm.2016.11.026&rft_dat=%3Cproquest_cross%3E1854619593%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1854619593&rft_id=info:pmid/28033533&rft_els_id=S1751616116304179&rfr_iscdi=true |