Transport Diffusion of Light Gases in Polyethylene Using Atomistic Simulations

We explore the temperature dependence of the self-, corrected-, and transport-diffusivities of CO2, CH4, and N2 in a polyethylene (PE) polymer membrane through equilibrium molecular dynamics simulations. We also investigate the morphology of the polymer membrane based on the intermolecular radial di...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Langmuir 2017-01, Vol.33 (4), p.936-946
Hauptverfasser: Dutta, Ravi C, Bhatia, Suresh K
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 946
container_issue 4
container_start_page 936
container_title Langmuir
container_volume 33
creator Dutta, Ravi C
Bhatia, Suresh K
description We explore the temperature dependence of the self-, corrected-, and transport-diffusivities of CO2, CH4, and N2 in a polyethylene (PE) polymer membrane through equilibrium molecular dynamics simulations. We also investigate the morphology of the polymer membrane based on the intermolecular radial distribution function, free volume, and pore size distribution analysis. The results indicate the existence of 1.5–3 Å diameter pores in the PE membrane, and with the increase in the temperature, the polymer swells linearly with changing slope at 450 K in the absence of gas and exponentially in the presence of gas. The gas adsorption isotherms extracted via a two-step methodology, considering the dynamics and structural transitions in the polymer matrix upon gas adsorption, were fitted using a “two-mode sorption” model. Our results suggest that CO2 adsorbs strongly, whereas N2 shows weak adsorption in PE. The results demonstrate that CO2 is more soluble, whereas N2 is least soluble. Further, it is found that an increase in the temperature negatively impacts the solubility of CO2 and CH4 but positively for N2; this reverse solubility behavior is due to increased availability of pores accessible to N2, which are kinetically closed at the lowest temperatures. The reported self-diffusivities of the gases from our simulations are on the order of 10–6 cm2/s, consistent with the experimental evidence, whereas transport-diffusivities are 2 orders of magnitude higher than self-diffusivities. Furthermore, the temperature dependence of the self-diffusivity follows Arrhenius behavior, whereas the transport-diffusivity follows non-Arrhenius behavior having different activation energies in low and high temperature regions. Also, it is seen that loading has little effect on the self- and corrected-diffusion coefficients of all gases in the PE membrane.
doi_str_mv 10.1021/acs.langmuir.6b04037
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1854617628</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1854617628</sourcerecordid><originalsourceid>FETCH-LOGICAL-a348t-f02198c31160666f42bae3a76a550ba0a3fabc07ec415419839451b82e31a5333</originalsourceid><addsrcrecordid>eNp9kE1PAjEQhhujEUT_gTE9elmcbj92ORI_0ISoiXBuumsLJbtbbLsH_r0lgEdPc3nemXkfhG4JjAnk5EHVYdyobtX21o9FBQxocYaGhOeQ8TIvztEQCkazggk6QFchbABgQtnkEg3yEqggJR-i94VXXdg6H_GTNaYP1nXYGTy3q3XEMxV0wLbDn67Z6bjeNbrTeBlst8LT6Foboq3xl237RsWUDNfowqgm6JvjHKHly_Pi8TWbf8zeHqfzTFFWxsykApOypoQIEEIYlldKU1UIxTlUChQ1qqqh0DUjnCWUThgnVZlrShSnlI7Q_WHv1rufXoco0y-1bpIQ7fogUzcmSCHyMqHsgNbeheC1kVtvW-V3koDcm5TJpDyZlEeTKXZ3vNBXrf7-C53UJQAOwD6-cb3vUuH_d_4CUrCCuw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1854617628</pqid></control><display><type>article</type><title>Transport Diffusion of Light Gases in Polyethylene Using Atomistic Simulations</title><source>American Chemical Society Journals</source><creator>Dutta, Ravi C ; Bhatia, Suresh K</creator><creatorcontrib>Dutta, Ravi C ; Bhatia, Suresh K</creatorcontrib><description>We explore the temperature dependence of the self-, corrected-, and transport-diffusivities of CO2, CH4, and N2 in a polyethylene (PE) polymer membrane through equilibrium molecular dynamics simulations. We also investigate the morphology of the polymer membrane based on the intermolecular radial distribution function, free volume, and pore size distribution analysis. The results indicate the existence of 1.5–3 Å diameter pores in the PE membrane, and with the increase in the temperature, the polymer swells linearly with changing slope at 450 K in the absence of gas and exponentially in the presence of gas. The gas adsorption isotherms extracted via a two-step methodology, considering the dynamics and structural transitions in the polymer matrix upon gas adsorption, were fitted using a “two-mode sorption” model. Our results suggest that CO2 adsorbs strongly, whereas N2 shows weak adsorption in PE. The results demonstrate that CO2 is more soluble, whereas N2 is least soluble. Further, it is found that an increase in the temperature negatively impacts the solubility of CO2 and CH4 but positively for N2; this reverse solubility behavior is due to increased availability of pores accessible to N2, which are kinetically closed at the lowest temperatures. The reported self-diffusivities of the gases from our simulations are on the order of 10–6 cm2/s, consistent with the experimental evidence, whereas transport-diffusivities are 2 orders of magnitude higher than self-diffusivities. Furthermore, the temperature dependence of the self-diffusivity follows Arrhenius behavior, whereas the transport-diffusivity follows non-Arrhenius behavior having different activation energies in low and high temperature regions. Also, it is seen that loading has little effect on the self- and corrected-diffusion coefficients of all gases in the PE membrane.</description><identifier>ISSN: 0743-7463</identifier><identifier>EISSN: 1520-5827</identifier><identifier>DOI: 10.1021/acs.langmuir.6b04037</identifier><identifier>PMID: 28036185</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Langmuir, 2017-01, Vol.33 (4), p.936-946</ispartof><rights>Copyright © 2016 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a348t-f02198c31160666f42bae3a76a550ba0a3fabc07ec415419839451b82e31a5333</citedby><cites>FETCH-LOGICAL-a348t-f02198c31160666f42bae3a76a550ba0a3fabc07ec415419839451b82e31a5333</cites><orcidid>0000-0001-9716-0112</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.langmuir.6b04037$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.langmuir.6b04037$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2763,27074,27922,27923,56736,56786</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28036185$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dutta, Ravi C</creatorcontrib><creatorcontrib>Bhatia, Suresh K</creatorcontrib><title>Transport Diffusion of Light Gases in Polyethylene Using Atomistic Simulations</title><title>Langmuir</title><addtitle>Langmuir</addtitle><description>We explore the temperature dependence of the self-, corrected-, and transport-diffusivities of CO2, CH4, and N2 in a polyethylene (PE) polymer membrane through equilibrium molecular dynamics simulations. We also investigate the morphology of the polymer membrane based on the intermolecular radial distribution function, free volume, and pore size distribution analysis. The results indicate the existence of 1.5–3 Å diameter pores in the PE membrane, and with the increase in the temperature, the polymer swells linearly with changing slope at 450 K in the absence of gas and exponentially in the presence of gas. The gas adsorption isotherms extracted via a two-step methodology, considering the dynamics and structural transitions in the polymer matrix upon gas adsorption, were fitted using a “two-mode sorption” model. Our results suggest that CO2 adsorbs strongly, whereas N2 shows weak adsorption in PE. The results demonstrate that CO2 is more soluble, whereas N2 is least soluble. Further, it is found that an increase in the temperature negatively impacts the solubility of CO2 and CH4 but positively for N2; this reverse solubility behavior is due to increased availability of pores accessible to N2, which are kinetically closed at the lowest temperatures. The reported self-diffusivities of the gases from our simulations are on the order of 10–6 cm2/s, consistent with the experimental evidence, whereas transport-diffusivities are 2 orders of magnitude higher than self-diffusivities. Furthermore, the temperature dependence of the self-diffusivity follows Arrhenius behavior, whereas the transport-diffusivity follows non-Arrhenius behavior having different activation energies in low and high temperature regions. Also, it is seen that loading has little effect on the self- and corrected-diffusion coefficients of all gases in the PE membrane.</description><issn>0743-7463</issn><issn>1520-5827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kE1PAjEQhhujEUT_gTE9elmcbj92ORI_0ISoiXBuumsLJbtbbLsH_r0lgEdPc3nemXkfhG4JjAnk5EHVYdyobtX21o9FBQxocYaGhOeQ8TIvztEQCkazggk6QFchbABgQtnkEg3yEqggJR-i94VXXdg6H_GTNaYP1nXYGTy3q3XEMxV0wLbDn67Z6bjeNbrTeBlst8LT6Foboq3xl237RsWUDNfowqgm6JvjHKHly_Pi8TWbf8zeHqfzTFFWxsykApOypoQIEEIYlldKU1UIxTlUChQ1qqqh0DUjnCWUThgnVZlrShSnlI7Q_WHv1rufXoco0y-1bpIQ7fogUzcmSCHyMqHsgNbeheC1kVtvW-V3koDcm5TJpDyZlEeTKXZ3vNBXrf7-C53UJQAOwD6-cb3vUuH_d_4CUrCCuw</recordid><startdate>20170131</startdate><enddate>20170131</enddate><creator>Dutta, Ravi C</creator><creator>Bhatia, Suresh K</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9716-0112</orcidid></search><sort><creationdate>20170131</creationdate><title>Transport Diffusion of Light Gases in Polyethylene Using Atomistic Simulations</title><author>Dutta, Ravi C ; Bhatia, Suresh K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a348t-f02198c31160666f42bae3a76a550ba0a3fabc07ec415419839451b82e31a5333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dutta, Ravi C</creatorcontrib><creatorcontrib>Bhatia, Suresh K</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Langmuir</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dutta, Ravi C</au><au>Bhatia, Suresh K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transport Diffusion of Light Gases in Polyethylene Using Atomistic Simulations</atitle><jtitle>Langmuir</jtitle><addtitle>Langmuir</addtitle><date>2017-01-31</date><risdate>2017</risdate><volume>33</volume><issue>4</issue><spage>936</spage><epage>946</epage><pages>936-946</pages><issn>0743-7463</issn><eissn>1520-5827</eissn><abstract>We explore the temperature dependence of the self-, corrected-, and transport-diffusivities of CO2, CH4, and N2 in a polyethylene (PE) polymer membrane through equilibrium molecular dynamics simulations. We also investigate the morphology of the polymer membrane based on the intermolecular radial distribution function, free volume, and pore size distribution analysis. The results indicate the existence of 1.5–3 Å diameter pores in the PE membrane, and with the increase in the temperature, the polymer swells linearly with changing slope at 450 K in the absence of gas and exponentially in the presence of gas. The gas adsorption isotherms extracted via a two-step methodology, considering the dynamics and structural transitions in the polymer matrix upon gas adsorption, were fitted using a “two-mode sorption” model. Our results suggest that CO2 adsorbs strongly, whereas N2 shows weak adsorption in PE. The results demonstrate that CO2 is more soluble, whereas N2 is least soluble. Further, it is found that an increase in the temperature negatively impacts the solubility of CO2 and CH4 but positively for N2; this reverse solubility behavior is due to increased availability of pores accessible to N2, which are kinetically closed at the lowest temperatures. The reported self-diffusivities of the gases from our simulations are on the order of 10–6 cm2/s, consistent with the experimental evidence, whereas transport-diffusivities are 2 orders of magnitude higher than self-diffusivities. Furthermore, the temperature dependence of the self-diffusivity follows Arrhenius behavior, whereas the transport-diffusivity follows non-Arrhenius behavior having different activation energies in low and high temperature regions. Also, it is seen that loading has little effect on the self- and corrected-diffusion coefficients of all gases in the PE membrane.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>28036185</pmid><doi>10.1021/acs.langmuir.6b04037</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-9716-0112</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0743-7463
ispartof Langmuir, 2017-01, Vol.33 (4), p.936-946
issn 0743-7463
1520-5827
language eng
recordid cdi_proquest_miscellaneous_1854617628
source American Chemical Society Journals
title Transport Diffusion of Light Gases in Polyethylene Using Atomistic Simulations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T12%3A30%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transport%20Diffusion%20of%20Light%20Gases%20in%20Polyethylene%20Using%20Atomistic%20Simulations&rft.jtitle=Langmuir&rft.au=Dutta,%20Ravi%20C&rft.date=2017-01-31&rft.volume=33&rft.issue=4&rft.spage=936&rft.epage=946&rft.pages=936-946&rft.issn=0743-7463&rft.eissn=1520-5827&rft_id=info:doi/10.1021/acs.langmuir.6b04037&rft_dat=%3Cproquest_cross%3E1854617628%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1854617628&rft_id=info:pmid/28036185&rfr_iscdi=true