Bioluminescence of Firefly Squid via Mechanism of Single Electron-Transfer Oxygenation and Charge-Transfer-Induced Luminescence

Watasenia scintillans (W. scintillans) is a deep-sea luminescent squid with a popular name of firefly squid. It produces flashes of blue light via a series of complicated luciferin-luciferase reactions involving ATP, Mg2+, and molecular oxygen. Tsuji has proposed a hypothetical scheme for this myste...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2017-01, Vol.139 (3), p.1106-1119
Hauptverfasser: Ding, Bo-Wen, Liu, Ya-Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1119
container_issue 3
container_start_page 1106
container_title Journal of the American Chemical Society
container_volume 139
creator Ding, Bo-Wen
Liu, Ya-Jun
description Watasenia scintillans (W. scintillans) is a deep-sea luminescent squid with a popular name of firefly squid. It produces flashes of blue light via a series of complicated luciferin-luciferase reactions involving ATP, Mg2+, and molecular oxygen. Tsuji has proposed a hypothetical scheme for this mysterious bioluminescence (BL) process, but the proposal is short of strong evidence experimentally or theoretically, especially for two key steps. They are the addition of molecular oxygen to luciferin and the formation of light emitter. For the first time, the present study investigates the two steps by reliable density functional theory (DFT) and time-dependent DFT. The results of calculated energetics, charge transfer process, electronic structures, and molecular dynamics give convincing support for Tsuji’s proposal. The oxygenation reaction occurs with a single electron-transfer (SET) mechanism, and the light emitter is produced via the mechanism of gradually reversible charge-transfer-induced luminescence (GRCTIL). The simulation of nonadiabatic molecular dynamics further confirms the GRCTIL mechanisms and evaluates the quantum yield of the light emitter to be 43%. The knowledge obtained in the current study will help to understand a large amount of BL systems in nature, since the core structure of W. scintillans luciferin, imidazopyrazinone, is common in the luciferins of about eight phyla of luminescent organisms.
doi_str_mv 10.1021/jacs.6b09119
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1854107456</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1854107456</sourcerecordid><originalsourceid>FETCH-LOGICAL-a324t-86ac4fa44f1aac17070c4837d889c1ce064b038d58c174c02b1488a53bc745133</originalsourceid><addsrcrecordid>eNptkM9PwjAYhhujEURvnk2PHhz217ZyVAJKguEAnpeu66Bka6FlRk7-63YB0YOnpnmfvt_XB4BbjPoYEfy4FtL3kxwNMB6cgS6OCYpiTJJz0EUIkSjlCe2AK-_X4coIx5egQziiJE1IF3w9a1s1tTbKS2WkgraEY-1UWe3hfNvoAn5oAd-UXAmjfd3Gc22WlYKjSsmdsyZaOGF8qRycfe6XyoidtgYKU8DhSrilOuXRxBSNVAWc_pl3DS5KUXl1czx74H08Wgxfo-nsZTJ8mkaCEraLeCIkKwVjJRZC4hSlSDJO04LzgcRSoYTliPIi5iFkEpEcM85FTHOZshhT2gP3h96Ns9tG-V1W67BBVQmjbOMzzGOGUWCTgD4cUOms90FFtnG6Fm6fYZS1yrNWeXZUHvC7Y3OT16o4wT-Of0e3r9a2cSZ89P-ub8QTiv0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1854107456</pqid></control><display><type>article</type><title>Bioluminescence of Firefly Squid via Mechanism of Single Electron-Transfer Oxygenation and Charge-Transfer-Induced Luminescence</title><source>ACS Publications</source><source>MEDLINE</source><creator>Ding, Bo-Wen ; Liu, Ya-Jun</creator><creatorcontrib>Ding, Bo-Wen ; Liu, Ya-Jun</creatorcontrib><description>Watasenia scintillans (W. scintillans) is a deep-sea luminescent squid with a popular name of firefly squid. It produces flashes of blue light via a series of complicated luciferin-luciferase reactions involving ATP, Mg2+, and molecular oxygen. Tsuji has proposed a hypothetical scheme for this mysterious bioluminescence (BL) process, but the proposal is short of strong evidence experimentally or theoretically, especially for two key steps. They are the addition of molecular oxygen to luciferin and the formation of light emitter. For the first time, the present study investigates the two steps by reliable density functional theory (DFT) and time-dependent DFT. The results of calculated energetics, charge transfer process, electronic structures, and molecular dynamics give convincing support for Tsuji’s proposal. The oxygenation reaction occurs with a single electron-transfer (SET) mechanism, and the light emitter is produced via the mechanism of gradually reversible charge-transfer-induced luminescence (GRCTIL). The simulation of nonadiabatic molecular dynamics further confirms the GRCTIL mechanisms and evaluates the quantum yield of the light emitter to be 43%. The knowledge obtained in the current study will help to understand a large amount of BL systems in nature, since the core structure of W. scintillans luciferin, imidazopyrazinone, is common in the luciferins of about eight phyla of luminescent organisms.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.6b09119</identifier><identifier>PMID: 28032762</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Animals ; Benzothiazoles - chemistry ; Benzothiazoles - metabolism ; Decapodiformes - chemistry ; Decapodiformes - metabolism ; Electron Transport ; Luciferases - chemistry ; Luciferases - metabolism ; Luminescence ; Molecular Dynamics Simulation ; Molecular Structure ; Oxygen - chemistry ; Oxygen - metabolism ; Quantum Theory ; Time Factors</subject><ispartof>Journal of the American Chemical Society, 2017-01, Vol.139 (3), p.1106-1119</ispartof><rights>Copyright © 2016 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a324t-86ac4fa44f1aac17070c4837d889c1ce064b038d58c174c02b1488a53bc745133</citedby><cites>FETCH-LOGICAL-a324t-86ac4fa44f1aac17070c4837d889c1ce064b038d58c174c02b1488a53bc745133</cites><orcidid>0000-0001-8761-5339</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jacs.6b09119$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jacs.6b09119$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28032762$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ding, Bo-Wen</creatorcontrib><creatorcontrib>Liu, Ya-Jun</creatorcontrib><title>Bioluminescence of Firefly Squid via Mechanism of Single Electron-Transfer Oxygenation and Charge-Transfer-Induced Luminescence</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>Watasenia scintillans (W. scintillans) is a deep-sea luminescent squid with a popular name of firefly squid. It produces flashes of blue light via a series of complicated luciferin-luciferase reactions involving ATP, Mg2+, and molecular oxygen. Tsuji has proposed a hypothetical scheme for this mysterious bioluminescence (BL) process, but the proposal is short of strong evidence experimentally or theoretically, especially for two key steps. They are the addition of molecular oxygen to luciferin and the formation of light emitter. For the first time, the present study investigates the two steps by reliable density functional theory (DFT) and time-dependent DFT. The results of calculated energetics, charge transfer process, electronic structures, and molecular dynamics give convincing support for Tsuji’s proposal. The oxygenation reaction occurs with a single electron-transfer (SET) mechanism, and the light emitter is produced via the mechanism of gradually reversible charge-transfer-induced luminescence (GRCTIL). The simulation of nonadiabatic molecular dynamics further confirms the GRCTIL mechanisms and evaluates the quantum yield of the light emitter to be 43%. The knowledge obtained in the current study will help to understand a large amount of BL systems in nature, since the core structure of W. scintillans luciferin, imidazopyrazinone, is common in the luciferins of about eight phyla of luminescent organisms.</description><subject>Animals</subject><subject>Benzothiazoles - chemistry</subject><subject>Benzothiazoles - metabolism</subject><subject>Decapodiformes - chemistry</subject><subject>Decapodiformes - metabolism</subject><subject>Electron Transport</subject><subject>Luciferases - chemistry</subject><subject>Luciferases - metabolism</subject><subject>Luminescence</subject><subject>Molecular Dynamics Simulation</subject><subject>Molecular Structure</subject><subject>Oxygen - chemistry</subject><subject>Oxygen - metabolism</subject><subject>Quantum Theory</subject><subject>Time Factors</subject><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkM9PwjAYhhujEURvnk2PHhz217ZyVAJKguEAnpeu66Bka6FlRk7-63YB0YOnpnmfvt_XB4BbjPoYEfy4FtL3kxwNMB6cgS6OCYpiTJJz0EUIkSjlCe2AK-_X4coIx5egQziiJE1IF3w9a1s1tTbKS2WkgraEY-1UWe3hfNvoAn5oAd-UXAmjfd3Gc22WlYKjSsmdsyZaOGF8qRycfe6XyoidtgYKU8DhSrilOuXRxBSNVAWc_pl3DS5KUXl1czx74H08Wgxfo-nsZTJ8mkaCEraLeCIkKwVjJRZC4hSlSDJO04LzgcRSoYTliPIi5iFkEpEcM85FTHOZshhT2gP3h96Ns9tG-V1W67BBVQmjbOMzzGOGUWCTgD4cUOms90FFtnG6Fm6fYZS1yrNWeXZUHvC7Y3OT16o4wT-Of0e3r9a2cSZ89P-ub8QTiv0</recordid><startdate>20170125</startdate><enddate>20170125</enddate><creator>Ding, Bo-Wen</creator><creator>Liu, Ya-Jun</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8761-5339</orcidid></search><sort><creationdate>20170125</creationdate><title>Bioluminescence of Firefly Squid via Mechanism of Single Electron-Transfer Oxygenation and Charge-Transfer-Induced Luminescence</title><author>Ding, Bo-Wen ; Liu, Ya-Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a324t-86ac4fa44f1aac17070c4837d889c1ce064b038d58c174c02b1488a53bc745133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Animals</topic><topic>Benzothiazoles - chemistry</topic><topic>Benzothiazoles - metabolism</topic><topic>Decapodiformes - chemistry</topic><topic>Decapodiformes - metabolism</topic><topic>Electron Transport</topic><topic>Luciferases - chemistry</topic><topic>Luciferases - metabolism</topic><topic>Luminescence</topic><topic>Molecular Dynamics Simulation</topic><topic>Molecular Structure</topic><topic>Oxygen - chemistry</topic><topic>Oxygen - metabolism</topic><topic>Quantum Theory</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ding, Bo-Wen</creatorcontrib><creatorcontrib>Liu, Ya-Jun</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ding, Bo-Wen</au><au>Liu, Ya-Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bioluminescence of Firefly Squid via Mechanism of Single Electron-Transfer Oxygenation and Charge-Transfer-Induced Luminescence</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2017-01-25</date><risdate>2017</risdate><volume>139</volume><issue>3</issue><spage>1106</spage><epage>1119</epage><pages>1106-1119</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>Watasenia scintillans (W. scintillans) is a deep-sea luminescent squid with a popular name of firefly squid. It produces flashes of blue light via a series of complicated luciferin-luciferase reactions involving ATP, Mg2+, and molecular oxygen. Tsuji has proposed a hypothetical scheme for this mysterious bioluminescence (BL) process, but the proposal is short of strong evidence experimentally or theoretically, especially for two key steps. They are the addition of molecular oxygen to luciferin and the formation of light emitter. For the first time, the present study investigates the two steps by reliable density functional theory (DFT) and time-dependent DFT. The results of calculated energetics, charge transfer process, electronic structures, and molecular dynamics give convincing support for Tsuji’s proposal. The oxygenation reaction occurs with a single electron-transfer (SET) mechanism, and the light emitter is produced via the mechanism of gradually reversible charge-transfer-induced luminescence (GRCTIL). The simulation of nonadiabatic molecular dynamics further confirms the GRCTIL mechanisms and evaluates the quantum yield of the light emitter to be 43%. The knowledge obtained in the current study will help to understand a large amount of BL systems in nature, since the core structure of W. scintillans luciferin, imidazopyrazinone, is common in the luciferins of about eight phyla of luminescent organisms.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>28032762</pmid><doi>10.1021/jacs.6b09119</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-8761-5339</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2017-01, Vol.139 (3), p.1106-1119
issn 0002-7863
1520-5126
language eng
recordid cdi_proquest_miscellaneous_1854107456
source ACS Publications; MEDLINE
subjects Animals
Benzothiazoles - chemistry
Benzothiazoles - metabolism
Decapodiformes - chemistry
Decapodiformes - metabolism
Electron Transport
Luciferases - chemistry
Luciferases - metabolism
Luminescence
Molecular Dynamics Simulation
Molecular Structure
Oxygen - chemistry
Oxygen - metabolism
Quantum Theory
Time Factors
title Bioluminescence of Firefly Squid via Mechanism of Single Electron-Transfer Oxygenation and Charge-Transfer-Induced Luminescence
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T03%3A16%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bioluminescence%20of%20Firefly%20Squid%20via%20Mechanism%20of%20Single%20Electron-Transfer%20Oxygenation%20and%20Charge-Transfer-Induced%20Luminescence&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Ding,%20Bo-Wen&rft.date=2017-01-25&rft.volume=139&rft.issue=3&rft.spage=1106&rft.epage=1119&rft.pages=1106-1119&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.6b09119&rft_dat=%3Cproquest_cross%3E1854107456%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1854107456&rft_id=info:pmid/28032762&rfr_iscdi=true