Molecular Dissection of the Forces Responsible for Viral Capsid Assembly and Stabilization by Decoration Proteins

Complex double-stranded DNA viruses utilize a terminase enzyme to package their genomes into a preassembled procapsid shell. DNA packaging triggers a major conformational change in the proteins assembled into the shell and most often subsequent addition of a decoration protein that is required to st...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemistry (Easton) 2017-02, Vol.56 (5), p.767-778
Hauptverfasser: Lambert, Shannon, Yang, Qin, De Angeles, Rolando, Chang, Jenny R, Ortega, Marcos, Davis, Christal, Catalano, Carlos Enrique
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 778
container_issue 5
container_start_page 767
container_title Biochemistry (Easton)
container_volume 56
creator Lambert, Shannon
Yang, Qin
De Angeles, Rolando
Chang, Jenny R
Ortega, Marcos
Davis, Christal
Catalano, Carlos Enrique
description Complex double-stranded DNA viruses utilize a terminase enzyme to package their genomes into a preassembled procapsid shell. DNA packaging triggers a major conformational change in the proteins assembled into the shell and most often subsequent addition of a decoration protein that is required to stabilize the structure. In bacteriophage λ, DNA packaging drives a procapsid expansion transition to afford a larger but fragile shell. The gpD decoration protein adds to the expanded shell as trimeric spikes at each of the 140 three-fold axes. The spikes provide mechanical strength to the shell such that it can withstand the tremendous internal forces generated by the packaged DNA in addition to environmental insults. Hydrophobic, electrostatic, and aromatic–proline noncovalent interactions have been proposed to mediate gpD trimer spike assembly at the expanded shell surface. Here, we directly examine each of these interactions and demonstrate that hydrophobic interactions play the dominant role. In the course of this study, we unexpectedly found that Trp308 in the λ major capsid protein (gpE) plays a critical role in shell assembly. The gpE-W308A mutation affords a soluble, natively folded protein that does not further assemble into a procapsid shell, despite the fact that it retains binding interactions with the scaffolding protein, the shell assembly chaparone protein. The data support a model in which the λ procapsid shell assembles via cooperative interaction of monomeric capsid proteins, as observed in the herpesviruses and phages such as P22. The significance of the results with respect to capsid assembly, maturation, and stability is discussed.
doi_str_mv 10.1021/acs.biochem.6b00705
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1854105615</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1854105615</sourcerecordid><originalsourceid>FETCH-LOGICAL-a345t-ee0b10c4909b20f8d73ab29581af32e9ddbcc0d5393b008dc6c592f257d1e6a03</originalsourceid><addsrcrecordid>eNp9kEtv2zAQhImiQeO4_QUFCh57kb2kREk8Gk6cFEiQIH1cBT5WMANKtEnp4Pz6yLHbY0-LAWZmMR8hXxksGHC2VCYttAtmi92i1AAViA9kxgSHrJBSfCQzACgzLku4JFcpvUyygKr4RC55DVxWtZiR_UPwaEavIr12KaEZXOhpaOmwRboJ0WCiz5h2oU9Oe6RtiPSPi8rTtdolZ-lqCnXaH6jqLf05KO28e1XvLfpAr9GEeFJPMQzo-vSZXLTKJ_xyvnPye3Pza32X3T_e_liv7jOVF2LIEEEzMIUEqTm0ta1ypbkUNVNtzlFaq40BK3KZT9tra0ojJG-5qCzDUkE-J99PvbsY9iOmoelcMui96jGMqWG1KBiIkonJmp-sJoaUIrbNLrpOxUPDoDmybibWzZl1c2Y9pb6dH4y6Q_sv8xfuZFieDMf0SxhjP-39b-Uba_uO_Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1854105615</pqid></control><display><type>article</type><title>Molecular Dissection of the Forces Responsible for Viral Capsid Assembly and Stabilization by Decoration Proteins</title><source>MEDLINE</source><source>ACS Publications</source><creator>Lambert, Shannon ; Yang, Qin ; De Angeles, Rolando ; Chang, Jenny R ; Ortega, Marcos ; Davis, Christal ; Catalano, Carlos Enrique</creator><creatorcontrib>Lambert, Shannon ; Yang, Qin ; De Angeles, Rolando ; Chang, Jenny R ; Ortega, Marcos ; Davis, Christal ; Catalano, Carlos Enrique</creatorcontrib><description>Complex double-stranded DNA viruses utilize a terminase enzyme to package their genomes into a preassembled procapsid shell. DNA packaging triggers a major conformational change in the proteins assembled into the shell and most often subsequent addition of a decoration protein that is required to stabilize the structure. In bacteriophage λ, DNA packaging drives a procapsid expansion transition to afford a larger but fragile shell. The gpD decoration protein adds to the expanded shell as trimeric spikes at each of the 140 three-fold axes. The spikes provide mechanical strength to the shell such that it can withstand the tremendous internal forces generated by the packaged DNA in addition to environmental insults. Hydrophobic, electrostatic, and aromatic–proline noncovalent interactions have been proposed to mediate gpD trimer spike assembly at the expanded shell surface. Here, we directly examine each of these interactions and demonstrate that hydrophobic interactions play the dominant role. In the course of this study, we unexpectedly found that Trp308 in the λ major capsid protein (gpE) plays a critical role in shell assembly. The gpE-W308A mutation affords a soluble, natively folded protein that does not further assemble into a procapsid shell, despite the fact that it retains binding interactions with the scaffolding protein, the shell assembly chaparone protein. The data support a model in which the λ procapsid shell assembles via cooperative interaction of monomeric capsid proteins, as observed in the herpesviruses and phages such as P22. The significance of the results with respect to capsid assembly, maturation, and stability is discussed.</description><identifier>ISSN: 0006-2960</identifier><identifier>EISSN: 1520-4995</identifier><identifier>DOI: 10.1021/acs.biochem.6b00705</identifier><identifier>PMID: 28029785</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Bacteriophage lambda - chemistry ; Bacteriophage lambda - genetics ; Bacteriophage lambda - metabolism ; Bacteriophage lambda - ultrastructure ; Biomechanical Phenomena ; Capsid Proteins - chemistry ; Capsid Proteins - genetics ; Capsid Proteins - metabolism ; DNA Packaging ; DNA, Viral - chemistry ; DNA, Viral - genetics ; DNA, Viral - metabolism ; Gene Expression ; Glycoproteins - chemistry ; Glycoproteins - genetics ; Glycoproteins - metabolism ; Hydrophobic and Hydrophilic Interactions ; Models, Molecular ; Mutation ; Protein Domains ; Protein Folding ; Protein Multimerization ; Protein Precursors - chemistry ; Protein Precursors - genetics ; Protein Precursors - metabolism ; Protein Structure, Secondary ; Static Electricity ; Virus Assembly - genetics</subject><ispartof>Biochemistry (Easton), 2017-02, Vol.56 (5), p.767-778</ispartof><rights>Copyright © 2016 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a345t-ee0b10c4909b20f8d73ab29581af32e9ddbcc0d5393b008dc6c592f257d1e6a03</citedby><cites>FETCH-LOGICAL-a345t-ee0b10c4909b20f8d73ab29581af32e9ddbcc0d5393b008dc6c592f257d1e6a03</cites><orcidid>0000-0003-2349-5758</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.biochem.6b00705$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.biochem.6b00705$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,782,786,2767,27083,27931,27932,56745,56795</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28029785$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lambert, Shannon</creatorcontrib><creatorcontrib>Yang, Qin</creatorcontrib><creatorcontrib>De Angeles, Rolando</creatorcontrib><creatorcontrib>Chang, Jenny R</creatorcontrib><creatorcontrib>Ortega, Marcos</creatorcontrib><creatorcontrib>Davis, Christal</creatorcontrib><creatorcontrib>Catalano, Carlos Enrique</creatorcontrib><title>Molecular Dissection of the Forces Responsible for Viral Capsid Assembly and Stabilization by Decoration Proteins</title><title>Biochemistry (Easton)</title><addtitle>Biochemistry</addtitle><description>Complex double-stranded DNA viruses utilize a terminase enzyme to package their genomes into a preassembled procapsid shell. DNA packaging triggers a major conformational change in the proteins assembled into the shell and most often subsequent addition of a decoration protein that is required to stabilize the structure. In bacteriophage λ, DNA packaging drives a procapsid expansion transition to afford a larger but fragile shell. The gpD decoration protein adds to the expanded shell as trimeric spikes at each of the 140 three-fold axes. The spikes provide mechanical strength to the shell such that it can withstand the tremendous internal forces generated by the packaged DNA in addition to environmental insults. Hydrophobic, electrostatic, and aromatic–proline noncovalent interactions have been proposed to mediate gpD trimer spike assembly at the expanded shell surface. Here, we directly examine each of these interactions and demonstrate that hydrophobic interactions play the dominant role. In the course of this study, we unexpectedly found that Trp308 in the λ major capsid protein (gpE) plays a critical role in shell assembly. The gpE-W308A mutation affords a soluble, natively folded protein that does not further assemble into a procapsid shell, despite the fact that it retains binding interactions with the scaffolding protein, the shell assembly chaparone protein. The data support a model in which the λ procapsid shell assembles via cooperative interaction of monomeric capsid proteins, as observed in the herpesviruses and phages such as P22. The significance of the results with respect to capsid assembly, maturation, and stability is discussed.</description><subject>Bacteriophage lambda - chemistry</subject><subject>Bacteriophage lambda - genetics</subject><subject>Bacteriophage lambda - metabolism</subject><subject>Bacteriophage lambda - ultrastructure</subject><subject>Biomechanical Phenomena</subject><subject>Capsid Proteins - chemistry</subject><subject>Capsid Proteins - genetics</subject><subject>Capsid Proteins - metabolism</subject><subject>DNA Packaging</subject><subject>DNA, Viral - chemistry</subject><subject>DNA, Viral - genetics</subject><subject>DNA, Viral - metabolism</subject><subject>Gene Expression</subject><subject>Glycoproteins - chemistry</subject><subject>Glycoproteins - genetics</subject><subject>Glycoproteins - metabolism</subject><subject>Hydrophobic and Hydrophilic Interactions</subject><subject>Models, Molecular</subject><subject>Mutation</subject><subject>Protein Domains</subject><subject>Protein Folding</subject><subject>Protein Multimerization</subject><subject>Protein Precursors - chemistry</subject><subject>Protein Precursors - genetics</subject><subject>Protein Precursors - metabolism</subject><subject>Protein Structure, Secondary</subject><subject>Static Electricity</subject><subject>Virus Assembly - genetics</subject><issn>0006-2960</issn><issn>1520-4995</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kEtv2zAQhImiQeO4_QUFCh57kb2kREk8Gk6cFEiQIH1cBT5WMANKtEnp4Pz6yLHbY0-LAWZmMR8hXxksGHC2VCYttAtmi92i1AAViA9kxgSHrJBSfCQzACgzLku4JFcpvUyygKr4RC55DVxWtZiR_UPwaEavIr12KaEZXOhpaOmwRboJ0WCiz5h2oU9Oe6RtiPSPi8rTtdolZ-lqCnXaH6jqLf05KO28e1XvLfpAr9GEeFJPMQzo-vSZXLTKJ_xyvnPye3Pza32X3T_e_liv7jOVF2LIEEEzMIUEqTm0ta1ypbkUNVNtzlFaq40BK3KZT9tra0ojJG-5qCzDUkE-J99PvbsY9iOmoelcMui96jGMqWG1KBiIkonJmp-sJoaUIrbNLrpOxUPDoDmybibWzZl1c2Y9pb6dH4y6Q_sv8xfuZFieDMf0SxhjP-39b-Uba_uO_Q</recordid><startdate>20170207</startdate><enddate>20170207</enddate><creator>Lambert, Shannon</creator><creator>Yang, Qin</creator><creator>De Angeles, Rolando</creator><creator>Chang, Jenny R</creator><creator>Ortega, Marcos</creator><creator>Davis, Christal</creator><creator>Catalano, Carlos Enrique</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2349-5758</orcidid></search><sort><creationdate>20170207</creationdate><title>Molecular Dissection of the Forces Responsible for Viral Capsid Assembly and Stabilization by Decoration Proteins</title><author>Lambert, Shannon ; Yang, Qin ; De Angeles, Rolando ; Chang, Jenny R ; Ortega, Marcos ; Davis, Christal ; Catalano, Carlos Enrique</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a345t-ee0b10c4909b20f8d73ab29581af32e9ddbcc0d5393b008dc6c592f257d1e6a03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Bacteriophage lambda - chemistry</topic><topic>Bacteriophage lambda - genetics</topic><topic>Bacteriophage lambda - metabolism</topic><topic>Bacteriophage lambda - ultrastructure</topic><topic>Biomechanical Phenomena</topic><topic>Capsid Proteins - chemistry</topic><topic>Capsid Proteins - genetics</topic><topic>Capsid Proteins - metabolism</topic><topic>DNA Packaging</topic><topic>DNA, Viral - chemistry</topic><topic>DNA, Viral - genetics</topic><topic>DNA, Viral - metabolism</topic><topic>Gene Expression</topic><topic>Glycoproteins - chemistry</topic><topic>Glycoproteins - genetics</topic><topic>Glycoproteins - metabolism</topic><topic>Hydrophobic and Hydrophilic Interactions</topic><topic>Models, Molecular</topic><topic>Mutation</topic><topic>Protein Domains</topic><topic>Protein Folding</topic><topic>Protein Multimerization</topic><topic>Protein Precursors - chemistry</topic><topic>Protein Precursors - genetics</topic><topic>Protein Precursors - metabolism</topic><topic>Protein Structure, Secondary</topic><topic>Static Electricity</topic><topic>Virus Assembly - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lambert, Shannon</creatorcontrib><creatorcontrib>Yang, Qin</creatorcontrib><creatorcontrib>De Angeles, Rolando</creatorcontrib><creatorcontrib>Chang, Jenny R</creatorcontrib><creatorcontrib>Ortega, Marcos</creatorcontrib><creatorcontrib>Davis, Christal</creatorcontrib><creatorcontrib>Catalano, Carlos Enrique</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Biochemistry (Easton)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lambert, Shannon</au><au>Yang, Qin</au><au>De Angeles, Rolando</au><au>Chang, Jenny R</au><au>Ortega, Marcos</au><au>Davis, Christal</au><au>Catalano, Carlos Enrique</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular Dissection of the Forces Responsible for Viral Capsid Assembly and Stabilization by Decoration Proteins</atitle><jtitle>Biochemistry (Easton)</jtitle><addtitle>Biochemistry</addtitle><date>2017-02-07</date><risdate>2017</risdate><volume>56</volume><issue>5</issue><spage>767</spage><epage>778</epage><pages>767-778</pages><issn>0006-2960</issn><eissn>1520-4995</eissn><abstract>Complex double-stranded DNA viruses utilize a terminase enzyme to package their genomes into a preassembled procapsid shell. DNA packaging triggers a major conformational change in the proteins assembled into the shell and most often subsequent addition of a decoration protein that is required to stabilize the structure. In bacteriophage λ, DNA packaging drives a procapsid expansion transition to afford a larger but fragile shell. The gpD decoration protein adds to the expanded shell as trimeric spikes at each of the 140 three-fold axes. The spikes provide mechanical strength to the shell such that it can withstand the tremendous internal forces generated by the packaged DNA in addition to environmental insults. Hydrophobic, electrostatic, and aromatic–proline noncovalent interactions have been proposed to mediate gpD trimer spike assembly at the expanded shell surface. Here, we directly examine each of these interactions and demonstrate that hydrophobic interactions play the dominant role. In the course of this study, we unexpectedly found that Trp308 in the λ major capsid protein (gpE) plays a critical role in shell assembly. The gpE-W308A mutation affords a soluble, natively folded protein that does not further assemble into a procapsid shell, despite the fact that it retains binding interactions with the scaffolding protein, the shell assembly chaparone protein. The data support a model in which the λ procapsid shell assembles via cooperative interaction of monomeric capsid proteins, as observed in the herpesviruses and phages such as P22. The significance of the results with respect to capsid assembly, maturation, and stability is discussed.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>28029785</pmid><doi>10.1021/acs.biochem.6b00705</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-2349-5758</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0006-2960
ispartof Biochemistry (Easton), 2017-02, Vol.56 (5), p.767-778
issn 0006-2960
1520-4995
language eng
recordid cdi_proquest_miscellaneous_1854105615
source MEDLINE; ACS Publications
subjects Bacteriophage lambda - chemistry
Bacteriophage lambda - genetics
Bacteriophage lambda - metabolism
Bacteriophage lambda - ultrastructure
Biomechanical Phenomena
Capsid Proteins - chemistry
Capsid Proteins - genetics
Capsid Proteins - metabolism
DNA Packaging
DNA, Viral - chemistry
DNA, Viral - genetics
DNA, Viral - metabolism
Gene Expression
Glycoproteins - chemistry
Glycoproteins - genetics
Glycoproteins - metabolism
Hydrophobic and Hydrophilic Interactions
Models, Molecular
Mutation
Protein Domains
Protein Folding
Protein Multimerization
Protein Precursors - chemistry
Protein Precursors - genetics
Protein Precursors - metabolism
Protein Structure, Secondary
Static Electricity
Virus Assembly - genetics
title Molecular Dissection of the Forces Responsible for Viral Capsid Assembly and Stabilization by Decoration Proteins
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T05%3A29%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20Dissection%20of%20the%20Forces%20Responsible%20for%20Viral%20Capsid%20Assembly%20and%20Stabilization%20by%20Decoration%20Proteins&rft.jtitle=Biochemistry%20(Easton)&rft.au=Lambert,%20Shannon&rft.date=2017-02-07&rft.volume=56&rft.issue=5&rft.spage=767&rft.epage=778&rft.pages=767-778&rft.issn=0006-2960&rft.eissn=1520-4995&rft_id=info:doi/10.1021/acs.biochem.6b00705&rft_dat=%3Cproquest_cross%3E1854105615%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1854105615&rft_id=info:pmid/28029785&rfr_iscdi=true