Inference of cellular level signaling networks using single-cell gene expression data in Caenorhabditis elegans reveals mechanisms of cell fate specification

Cell fate specification plays a key role to generate distinct cell types during metazoan development. However, most of the underlying signaling networks at cellular level are not well understood. Availability of time lapse single-cell gene expression data collected throughout Caenorhabditis elegans...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioinformatics (Oxford, England) England), 2017-05, Vol.33 (10), p.1528-1535
Hauptverfasser: Huang, Xiao-Tai, Zhu, Yuan, Chan, Lai Hang Leanne, Zhao, Zhongying, Yan, Hong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1535
container_issue 10
container_start_page 1528
container_title Bioinformatics (Oxford, England)
container_volume 33
creator Huang, Xiao-Tai
Zhu, Yuan
Chan, Lai Hang Leanne
Zhao, Zhongying
Yan, Hong
description Cell fate specification plays a key role to generate distinct cell types during metazoan development. However, most of the underlying signaling networks at cellular level are not well understood. Availability of time lapse single-cell gene expression data collected throughout Caenorhabditis elegans embryogenesis provides an excellent opportunity for investigating signaling networks underlying cell fate specification at systems, cellular and molecular levels. We propose a framework to infer signaling networks at cellular level by exploring the single-cell gene expression data. Through analyzing the expression data of nhr-25 , a hypodermis-specific transcription factor, in every cells of both wild-type and mutant C.elegans embryos through RNAi against 55 genes, we have inferred a total of 23 genes that regulate (activate or inhibit) nhr-25 expression in cell-specific fashion. We also infer the signaling pathways consisting of each of these genes and nhr-25 based on a probabilistic graphical model for the selected five founder cells, 'ABarp', 'ABpla', 'ABpra', 'Caa' and 'Cpa', which express nhr-25 and mostly develop into hypodermis. By integrating the inferred pathways, we reconstruct five signaling networks with one each for the five founder cells. Using RNAi gene knockdown as a validation method, the inferred networks are able to predict the effects of the knockdown genes. These signaling networks in the five founder cells are likely to ensure faithful hypodermis cell fate specification in C.elegans at cellular level. All source codes and data are available at the github repository https://github.com/xthuang226/Worm_Single_Cell_Data_and_Codes.git . zhuyuan@cug.edu.cn. Supplementary data are available at Bioinformatics online.
doi_str_mv 10.1093/bioinformatics/btw796
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1852787050</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1852787050</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-55819b454ec74c848da286e6297fa56287f9e63e2350f1d10de89dc71c53e4ae3</originalsourceid><addsrcrecordid>eNpVUU1P3DAQtaqi7vLxE1r52EvAjuPYOVarFpCQuMA5cpzx4taxt56kwI_hvzbRLitxmQ_pvXkz8wj5ytklZ4246nzy0aU8mNFbvOrGZ9XUn8iai1oVleb887FmYkVOEX8zxiST9ReyKjXjXOlyTd5uo4MM0QJNjloIYQom0wD_IFD022iCj1saYXxO-Q_SCZd2CQGKBU63EIHCyy4Dok-R9mY01Ee6MRBTfjJd70ePFAJsTUSa58kmIB3APpnoccB3YerMCBR3YL3zdj4rxXNy4mYwXBzyGXn89fNhc1Pc3V_fbn7cFVbIeiyk1LzpKlmBVZXVle5NqWuoy0Y5I-tSK9dALaAUkjnec9aDbnqruJUCKgPijHzfz93l9HcCHNvB47KTiZAmbLmWpdJqft8MlXuozQkxg2t32Q8mv7actYsz7Udn2r0zM-_bQWLqBuiPrHcrxH9M5JP-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1852787050</pqid></control><display><type>article</type><title>Inference of cellular level signaling networks using single-cell gene expression data in Caenorhabditis elegans reveals mechanisms of cell fate specification</title><source>MEDLINE</source><source>Oxford Journals Open Access Collection</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Huang, Xiao-Tai ; Zhu, Yuan ; Chan, Lai Hang Leanne ; Zhao, Zhongying ; Yan, Hong</creator><contributor>Sahinalp, Cenk</contributor><creatorcontrib>Huang, Xiao-Tai ; Zhu, Yuan ; Chan, Lai Hang Leanne ; Zhao, Zhongying ; Yan, Hong ; Sahinalp, Cenk</creatorcontrib><description>Cell fate specification plays a key role to generate distinct cell types during metazoan development. However, most of the underlying signaling networks at cellular level are not well understood. Availability of time lapse single-cell gene expression data collected throughout Caenorhabditis elegans embryogenesis provides an excellent opportunity for investigating signaling networks underlying cell fate specification at systems, cellular and molecular levels. We propose a framework to infer signaling networks at cellular level by exploring the single-cell gene expression data. Through analyzing the expression data of nhr-25 , a hypodermis-specific transcription factor, in every cells of both wild-type and mutant C.elegans embryos through RNAi against 55 genes, we have inferred a total of 23 genes that regulate (activate or inhibit) nhr-25 expression in cell-specific fashion. We also infer the signaling pathways consisting of each of these genes and nhr-25 based on a probabilistic graphical model for the selected five founder cells, 'ABarp', 'ABpla', 'ABpra', 'Caa' and 'Cpa', which express nhr-25 and mostly develop into hypodermis. By integrating the inferred pathways, we reconstruct five signaling networks with one each for the five founder cells. Using RNAi gene knockdown as a validation method, the inferred networks are able to predict the effects of the knockdown genes. These signaling networks in the five founder cells are likely to ensure faithful hypodermis cell fate specification in C.elegans at cellular level. All source codes and data are available at the github repository https://github.com/xthuang226/Worm_Single_Cell_Data_and_Codes.git . zhuyuan@cug.edu.cn. Supplementary data are available at Bioinformatics online.</description><identifier>ISSN: 1367-4803</identifier><identifier>EISSN: 1367-4811</identifier><identifier>DOI: 10.1093/bioinformatics/btw796</identifier><identifier>PMID: 28011782</identifier><language>eng</language><publisher>England</publisher><subject>Algorithms ; Animals ; Caenorhabditis elegans - genetics ; Caenorhabditis elegans - growth &amp; development ; Caenorhabditis elegans - metabolism ; Caenorhabditis elegans Proteins - genetics ; Caenorhabditis elegans Proteins - metabolism ; Cell Differentiation - genetics ; DNA-Binding Proteins - genetics ; Embryonic Development - genetics ; Gene Expression Profiling - methods ; Gene Expression Regulation, Developmental ; RNA Interference ; Signal Transduction - genetics ; Single-Cell Analysis - methods ; Transcription Factors - genetics</subject><ispartof>Bioinformatics (Oxford, England), 2017-05, Vol.33 (10), p.1528-1535</ispartof><rights>The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-55819b454ec74c848da286e6297fa56287f9e63e2350f1d10de89dc71c53e4ae3</citedby><cites>FETCH-LOGICAL-c356t-55819b454ec74c848da286e6297fa56287f9e63e2350f1d10de89dc71c53e4ae3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28011782$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Sahinalp, Cenk</contributor><creatorcontrib>Huang, Xiao-Tai</creatorcontrib><creatorcontrib>Zhu, Yuan</creatorcontrib><creatorcontrib>Chan, Lai Hang Leanne</creatorcontrib><creatorcontrib>Zhao, Zhongying</creatorcontrib><creatorcontrib>Yan, Hong</creatorcontrib><title>Inference of cellular level signaling networks using single-cell gene expression data in Caenorhabditis elegans reveals mechanisms of cell fate specification</title><title>Bioinformatics (Oxford, England)</title><addtitle>Bioinformatics</addtitle><description>Cell fate specification plays a key role to generate distinct cell types during metazoan development. However, most of the underlying signaling networks at cellular level are not well understood. Availability of time lapse single-cell gene expression data collected throughout Caenorhabditis elegans embryogenesis provides an excellent opportunity for investigating signaling networks underlying cell fate specification at systems, cellular and molecular levels. We propose a framework to infer signaling networks at cellular level by exploring the single-cell gene expression data. Through analyzing the expression data of nhr-25 , a hypodermis-specific transcription factor, in every cells of both wild-type and mutant C.elegans embryos through RNAi against 55 genes, we have inferred a total of 23 genes that regulate (activate or inhibit) nhr-25 expression in cell-specific fashion. We also infer the signaling pathways consisting of each of these genes and nhr-25 based on a probabilistic graphical model for the selected five founder cells, 'ABarp', 'ABpla', 'ABpra', 'Caa' and 'Cpa', which express nhr-25 and mostly develop into hypodermis. By integrating the inferred pathways, we reconstruct five signaling networks with one each for the five founder cells. Using RNAi gene knockdown as a validation method, the inferred networks are able to predict the effects of the knockdown genes. These signaling networks in the five founder cells are likely to ensure faithful hypodermis cell fate specification in C.elegans at cellular level. All source codes and data are available at the github repository https://github.com/xthuang226/Worm_Single_Cell_Data_and_Codes.git . zhuyuan@cug.edu.cn. Supplementary data are available at Bioinformatics online.</description><subject>Algorithms</subject><subject>Animals</subject><subject>Caenorhabditis elegans - genetics</subject><subject>Caenorhabditis elegans - growth &amp; development</subject><subject>Caenorhabditis elegans - metabolism</subject><subject>Caenorhabditis elegans Proteins - genetics</subject><subject>Caenorhabditis elegans Proteins - metabolism</subject><subject>Cell Differentiation - genetics</subject><subject>DNA-Binding Proteins - genetics</subject><subject>Embryonic Development - genetics</subject><subject>Gene Expression Profiling - methods</subject><subject>Gene Expression Regulation, Developmental</subject><subject>RNA Interference</subject><subject>Signal Transduction - genetics</subject><subject>Single-Cell Analysis - methods</subject><subject>Transcription Factors - genetics</subject><issn>1367-4803</issn><issn>1367-4811</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVUU1P3DAQtaqi7vLxE1r52EvAjuPYOVarFpCQuMA5cpzx4taxt56kwI_hvzbRLitxmQ_pvXkz8wj5ytklZ4246nzy0aU8mNFbvOrGZ9XUn8iai1oVleb887FmYkVOEX8zxiST9ReyKjXjXOlyTd5uo4MM0QJNjloIYQom0wD_IFD022iCj1saYXxO-Q_SCZd2CQGKBU63EIHCyy4Dok-R9mY01Ee6MRBTfjJd70ePFAJsTUSa58kmIB3APpnoccB3YerMCBR3YL3zdj4rxXNy4mYwXBzyGXn89fNhc1Pc3V_fbn7cFVbIeiyk1LzpKlmBVZXVle5NqWuoy0Y5I-tSK9dALaAUkjnec9aDbnqruJUCKgPijHzfz93l9HcCHNvB47KTiZAmbLmWpdJqft8MlXuozQkxg2t32Q8mv7actYsz7Udn2r0zM-_bQWLqBuiPrHcrxH9M5JP-</recordid><startdate>20170515</startdate><enddate>20170515</enddate><creator>Huang, Xiao-Tai</creator><creator>Zhu, Yuan</creator><creator>Chan, Lai Hang Leanne</creator><creator>Zhao, Zhongying</creator><creator>Yan, Hong</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20170515</creationdate><title>Inference of cellular level signaling networks using single-cell gene expression data in Caenorhabditis elegans reveals mechanisms of cell fate specification</title><author>Huang, Xiao-Tai ; Zhu, Yuan ; Chan, Lai Hang Leanne ; Zhao, Zhongying ; Yan, Hong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-55819b454ec74c848da286e6297fa56287f9e63e2350f1d10de89dc71c53e4ae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Animals</topic><topic>Caenorhabditis elegans - genetics</topic><topic>Caenorhabditis elegans - growth &amp; development</topic><topic>Caenorhabditis elegans - metabolism</topic><topic>Caenorhabditis elegans Proteins - genetics</topic><topic>Caenorhabditis elegans Proteins - metabolism</topic><topic>Cell Differentiation - genetics</topic><topic>DNA-Binding Proteins - genetics</topic><topic>Embryonic Development - genetics</topic><topic>Gene Expression Profiling - methods</topic><topic>Gene Expression Regulation, Developmental</topic><topic>RNA Interference</topic><topic>Signal Transduction - genetics</topic><topic>Single-Cell Analysis - methods</topic><topic>Transcription Factors - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Xiao-Tai</creatorcontrib><creatorcontrib>Zhu, Yuan</creatorcontrib><creatorcontrib>Chan, Lai Hang Leanne</creatorcontrib><creatorcontrib>Zhao, Zhongying</creatorcontrib><creatorcontrib>Yan, Hong</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Bioinformatics (Oxford, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Xiao-Tai</au><au>Zhu, Yuan</au><au>Chan, Lai Hang Leanne</au><au>Zhao, Zhongying</au><au>Yan, Hong</au><au>Sahinalp, Cenk</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inference of cellular level signaling networks using single-cell gene expression data in Caenorhabditis elegans reveals mechanisms of cell fate specification</atitle><jtitle>Bioinformatics (Oxford, England)</jtitle><addtitle>Bioinformatics</addtitle><date>2017-05-15</date><risdate>2017</risdate><volume>33</volume><issue>10</issue><spage>1528</spage><epage>1535</epage><pages>1528-1535</pages><issn>1367-4803</issn><eissn>1367-4811</eissn><abstract>Cell fate specification plays a key role to generate distinct cell types during metazoan development. However, most of the underlying signaling networks at cellular level are not well understood. Availability of time lapse single-cell gene expression data collected throughout Caenorhabditis elegans embryogenesis provides an excellent opportunity for investigating signaling networks underlying cell fate specification at systems, cellular and molecular levels. We propose a framework to infer signaling networks at cellular level by exploring the single-cell gene expression data. Through analyzing the expression data of nhr-25 , a hypodermis-specific transcription factor, in every cells of both wild-type and mutant C.elegans embryos through RNAi against 55 genes, we have inferred a total of 23 genes that regulate (activate or inhibit) nhr-25 expression in cell-specific fashion. We also infer the signaling pathways consisting of each of these genes and nhr-25 based on a probabilistic graphical model for the selected five founder cells, 'ABarp', 'ABpla', 'ABpra', 'Caa' and 'Cpa', which express nhr-25 and mostly develop into hypodermis. By integrating the inferred pathways, we reconstruct five signaling networks with one each for the five founder cells. Using RNAi gene knockdown as a validation method, the inferred networks are able to predict the effects of the knockdown genes. These signaling networks in the five founder cells are likely to ensure faithful hypodermis cell fate specification in C.elegans at cellular level. All source codes and data are available at the github repository https://github.com/xthuang226/Worm_Single_Cell_Data_and_Codes.git . zhuyuan@cug.edu.cn. Supplementary data are available at Bioinformatics online.</abstract><cop>England</cop><pmid>28011782</pmid><doi>10.1093/bioinformatics/btw796</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1367-4803
ispartof Bioinformatics (Oxford, England), 2017-05, Vol.33 (10), p.1528-1535
issn 1367-4803
1367-4811
language eng
recordid cdi_proquest_miscellaneous_1852787050
source MEDLINE; Oxford Journals Open Access Collection; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection
subjects Algorithms
Animals
Caenorhabditis elegans - genetics
Caenorhabditis elegans - growth & development
Caenorhabditis elegans - metabolism
Caenorhabditis elegans Proteins - genetics
Caenorhabditis elegans Proteins - metabolism
Cell Differentiation - genetics
DNA-Binding Proteins - genetics
Embryonic Development - genetics
Gene Expression Profiling - methods
Gene Expression Regulation, Developmental
RNA Interference
Signal Transduction - genetics
Single-Cell Analysis - methods
Transcription Factors - genetics
title Inference of cellular level signaling networks using single-cell gene expression data in Caenorhabditis elegans reveals mechanisms of cell fate specification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T08%3A03%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inference%20of%20cellular%20level%20signaling%20networks%20using%20single-cell%20gene%20expression%20data%20in%20Caenorhabditis%20elegans%20reveals%20mechanisms%20of%20cell%20fate%20specification&rft.jtitle=Bioinformatics%20(Oxford,%20England)&rft.au=Huang,%20Xiao-Tai&rft.date=2017-05-15&rft.volume=33&rft.issue=10&rft.spage=1528&rft.epage=1535&rft.pages=1528-1535&rft.issn=1367-4803&rft.eissn=1367-4811&rft_id=info:doi/10.1093/bioinformatics/btw796&rft_dat=%3Cproquest_cross%3E1852787050%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1852787050&rft_id=info:pmid/28011782&rfr_iscdi=true