Inference of cellular level signaling networks using single-cell gene expression data in Caenorhabditis elegans reveals mechanisms of cell fate specification
Cell fate specification plays a key role to generate distinct cell types during metazoan development. However, most of the underlying signaling networks at cellular level are not well understood. Availability of time lapse single-cell gene expression data collected throughout Caenorhabditis elegans...
Gespeichert in:
Veröffentlicht in: | Bioinformatics (Oxford, England) England), 2017-05, Vol.33 (10), p.1528-1535 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1535 |
---|---|
container_issue | 10 |
container_start_page | 1528 |
container_title | Bioinformatics (Oxford, England) |
container_volume | 33 |
creator | Huang, Xiao-Tai Zhu, Yuan Chan, Lai Hang Leanne Zhao, Zhongying Yan, Hong |
description | Cell fate specification plays a key role to generate distinct cell types during metazoan development. However, most of the underlying signaling networks at cellular level are not well understood. Availability of time lapse single-cell gene expression data collected throughout Caenorhabditis elegans embryogenesis provides an excellent opportunity for investigating signaling networks underlying cell fate specification at systems, cellular and molecular levels.
We propose a framework to infer signaling networks at cellular level by exploring the single-cell gene expression data. Through analyzing the expression data of nhr-25 , a hypodermis-specific transcription factor, in every cells of both wild-type and mutant C.elegans embryos through RNAi against 55 genes, we have inferred a total of 23 genes that regulate (activate or inhibit) nhr-25 expression in cell-specific fashion. We also infer the signaling pathways consisting of each of these genes and nhr-25 based on a probabilistic graphical model for the selected five founder cells, 'ABarp', 'ABpla', 'ABpra', 'Caa' and 'Cpa', which express nhr-25 and mostly develop into hypodermis. By integrating the inferred pathways, we reconstruct five signaling networks with one each for the five founder cells. Using RNAi gene knockdown as a validation method, the inferred networks are able to predict the effects of the knockdown genes. These signaling networks in the five founder cells are likely to ensure faithful hypodermis cell fate specification in C.elegans at cellular level.
All source codes and data are available at the github repository https://github.com/xthuang226/Worm_Single_Cell_Data_and_Codes.git .
zhuyuan@cug.edu.cn.
Supplementary data are available at Bioinformatics online. |
doi_str_mv | 10.1093/bioinformatics/btw796 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1852787050</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1852787050</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-55819b454ec74c848da286e6297fa56287f9e63e2350f1d10de89dc71c53e4ae3</originalsourceid><addsrcrecordid>eNpVUU1P3DAQtaqi7vLxE1r52EvAjuPYOVarFpCQuMA5cpzx4taxt56kwI_hvzbRLitxmQ_pvXkz8wj5ytklZ4246nzy0aU8mNFbvOrGZ9XUn8iai1oVleb887FmYkVOEX8zxiST9ReyKjXjXOlyTd5uo4MM0QJNjloIYQom0wD_IFD022iCj1saYXxO-Q_SCZd2CQGKBU63EIHCyy4Dok-R9mY01Ee6MRBTfjJd70ePFAJsTUSa58kmIB3APpnoccB3YerMCBR3YL3zdj4rxXNy4mYwXBzyGXn89fNhc1Pc3V_fbn7cFVbIeiyk1LzpKlmBVZXVle5NqWuoy0Y5I-tSK9dALaAUkjnec9aDbnqruJUCKgPijHzfz93l9HcCHNvB47KTiZAmbLmWpdJqft8MlXuozQkxg2t32Q8mv7actYsz7Udn2r0zM-_bQWLqBuiPrHcrxH9M5JP-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1852787050</pqid></control><display><type>article</type><title>Inference of cellular level signaling networks using single-cell gene expression data in Caenorhabditis elegans reveals mechanisms of cell fate specification</title><source>MEDLINE</source><source>Oxford Journals Open Access Collection</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Huang, Xiao-Tai ; Zhu, Yuan ; Chan, Lai Hang Leanne ; Zhao, Zhongying ; Yan, Hong</creator><contributor>Sahinalp, Cenk</contributor><creatorcontrib>Huang, Xiao-Tai ; Zhu, Yuan ; Chan, Lai Hang Leanne ; Zhao, Zhongying ; Yan, Hong ; Sahinalp, Cenk</creatorcontrib><description>Cell fate specification plays a key role to generate distinct cell types during metazoan development. However, most of the underlying signaling networks at cellular level are not well understood. Availability of time lapse single-cell gene expression data collected throughout Caenorhabditis elegans embryogenesis provides an excellent opportunity for investigating signaling networks underlying cell fate specification at systems, cellular and molecular levels.
We propose a framework to infer signaling networks at cellular level by exploring the single-cell gene expression data. Through analyzing the expression data of nhr-25 , a hypodermis-specific transcription factor, in every cells of both wild-type and mutant C.elegans embryos through RNAi against 55 genes, we have inferred a total of 23 genes that regulate (activate or inhibit) nhr-25 expression in cell-specific fashion. We also infer the signaling pathways consisting of each of these genes and nhr-25 based on a probabilistic graphical model for the selected five founder cells, 'ABarp', 'ABpla', 'ABpra', 'Caa' and 'Cpa', which express nhr-25 and mostly develop into hypodermis. By integrating the inferred pathways, we reconstruct five signaling networks with one each for the five founder cells. Using RNAi gene knockdown as a validation method, the inferred networks are able to predict the effects of the knockdown genes. These signaling networks in the five founder cells are likely to ensure faithful hypodermis cell fate specification in C.elegans at cellular level.
All source codes and data are available at the github repository https://github.com/xthuang226/Worm_Single_Cell_Data_and_Codes.git .
zhuyuan@cug.edu.cn.
Supplementary data are available at Bioinformatics online.</description><identifier>ISSN: 1367-4803</identifier><identifier>EISSN: 1367-4811</identifier><identifier>DOI: 10.1093/bioinformatics/btw796</identifier><identifier>PMID: 28011782</identifier><language>eng</language><publisher>England</publisher><subject>Algorithms ; Animals ; Caenorhabditis elegans - genetics ; Caenorhabditis elegans - growth & development ; Caenorhabditis elegans - metabolism ; Caenorhabditis elegans Proteins - genetics ; Caenorhabditis elegans Proteins - metabolism ; Cell Differentiation - genetics ; DNA-Binding Proteins - genetics ; Embryonic Development - genetics ; Gene Expression Profiling - methods ; Gene Expression Regulation, Developmental ; RNA Interference ; Signal Transduction - genetics ; Single-Cell Analysis - methods ; Transcription Factors - genetics</subject><ispartof>Bioinformatics (Oxford, England), 2017-05, Vol.33 (10), p.1528-1535</ispartof><rights>The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-55819b454ec74c848da286e6297fa56287f9e63e2350f1d10de89dc71c53e4ae3</citedby><cites>FETCH-LOGICAL-c356t-55819b454ec74c848da286e6297fa56287f9e63e2350f1d10de89dc71c53e4ae3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28011782$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Sahinalp, Cenk</contributor><creatorcontrib>Huang, Xiao-Tai</creatorcontrib><creatorcontrib>Zhu, Yuan</creatorcontrib><creatorcontrib>Chan, Lai Hang Leanne</creatorcontrib><creatorcontrib>Zhao, Zhongying</creatorcontrib><creatorcontrib>Yan, Hong</creatorcontrib><title>Inference of cellular level signaling networks using single-cell gene expression data in Caenorhabditis elegans reveals mechanisms of cell fate specification</title><title>Bioinformatics (Oxford, England)</title><addtitle>Bioinformatics</addtitle><description>Cell fate specification plays a key role to generate distinct cell types during metazoan development. However, most of the underlying signaling networks at cellular level are not well understood. Availability of time lapse single-cell gene expression data collected throughout Caenorhabditis elegans embryogenesis provides an excellent opportunity for investigating signaling networks underlying cell fate specification at systems, cellular and molecular levels.
We propose a framework to infer signaling networks at cellular level by exploring the single-cell gene expression data. Through analyzing the expression data of nhr-25 , a hypodermis-specific transcription factor, in every cells of both wild-type and mutant C.elegans embryos through RNAi against 55 genes, we have inferred a total of 23 genes that regulate (activate or inhibit) nhr-25 expression in cell-specific fashion. We also infer the signaling pathways consisting of each of these genes and nhr-25 based on a probabilistic graphical model for the selected five founder cells, 'ABarp', 'ABpla', 'ABpra', 'Caa' and 'Cpa', which express nhr-25 and mostly develop into hypodermis. By integrating the inferred pathways, we reconstruct five signaling networks with one each for the five founder cells. Using RNAi gene knockdown as a validation method, the inferred networks are able to predict the effects of the knockdown genes. These signaling networks in the five founder cells are likely to ensure faithful hypodermis cell fate specification in C.elegans at cellular level.
All source codes and data are available at the github repository https://github.com/xthuang226/Worm_Single_Cell_Data_and_Codes.git .
zhuyuan@cug.edu.cn.
Supplementary data are available at Bioinformatics online.</description><subject>Algorithms</subject><subject>Animals</subject><subject>Caenorhabditis elegans - genetics</subject><subject>Caenorhabditis elegans - growth & development</subject><subject>Caenorhabditis elegans - metabolism</subject><subject>Caenorhabditis elegans Proteins - genetics</subject><subject>Caenorhabditis elegans Proteins - metabolism</subject><subject>Cell Differentiation - genetics</subject><subject>DNA-Binding Proteins - genetics</subject><subject>Embryonic Development - genetics</subject><subject>Gene Expression Profiling - methods</subject><subject>Gene Expression Regulation, Developmental</subject><subject>RNA Interference</subject><subject>Signal Transduction - genetics</subject><subject>Single-Cell Analysis - methods</subject><subject>Transcription Factors - genetics</subject><issn>1367-4803</issn><issn>1367-4811</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVUU1P3DAQtaqi7vLxE1r52EvAjuPYOVarFpCQuMA5cpzx4taxt56kwI_hvzbRLitxmQ_pvXkz8wj5ytklZ4246nzy0aU8mNFbvOrGZ9XUn8iai1oVleb887FmYkVOEX8zxiST9ReyKjXjXOlyTd5uo4MM0QJNjloIYQom0wD_IFD022iCj1saYXxO-Q_SCZd2CQGKBU63EIHCyy4Dok-R9mY01Ee6MRBTfjJd70ePFAJsTUSa58kmIB3APpnoccB3YerMCBR3YL3zdj4rxXNy4mYwXBzyGXn89fNhc1Pc3V_fbn7cFVbIeiyk1LzpKlmBVZXVle5NqWuoy0Y5I-tSK9dALaAUkjnec9aDbnqruJUCKgPijHzfz93l9HcCHNvB47KTiZAmbLmWpdJqft8MlXuozQkxg2t32Q8mv7actYsz7Udn2r0zM-_bQWLqBuiPrHcrxH9M5JP-</recordid><startdate>20170515</startdate><enddate>20170515</enddate><creator>Huang, Xiao-Tai</creator><creator>Zhu, Yuan</creator><creator>Chan, Lai Hang Leanne</creator><creator>Zhao, Zhongying</creator><creator>Yan, Hong</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20170515</creationdate><title>Inference of cellular level signaling networks using single-cell gene expression data in Caenorhabditis elegans reveals mechanisms of cell fate specification</title><author>Huang, Xiao-Tai ; Zhu, Yuan ; Chan, Lai Hang Leanne ; Zhao, Zhongying ; Yan, Hong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-55819b454ec74c848da286e6297fa56287f9e63e2350f1d10de89dc71c53e4ae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Animals</topic><topic>Caenorhabditis elegans - genetics</topic><topic>Caenorhabditis elegans - growth & development</topic><topic>Caenorhabditis elegans - metabolism</topic><topic>Caenorhabditis elegans Proteins - genetics</topic><topic>Caenorhabditis elegans Proteins - metabolism</topic><topic>Cell Differentiation - genetics</topic><topic>DNA-Binding Proteins - genetics</topic><topic>Embryonic Development - genetics</topic><topic>Gene Expression Profiling - methods</topic><topic>Gene Expression Regulation, Developmental</topic><topic>RNA Interference</topic><topic>Signal Transduction - genetics</topic><topic>Single-Cell Analysis - methods</topic><topic>Transcription Factors - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Xiao-Tai</creatorcontrib><creatorcontrib>Zhu, Yuan</creatorcontrib><creatorcontrib>Chan, Lai Hang Leanne</creatorcontrib><creatorcontrib>Zhao, Zhongying</creatorcontrib><creatorcontrib>Yan, Hong</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Bioinformatics (Oxford, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Xiao-Tai</au><au>Zhu, Yuan</au><au>Chan, Lai Hang Leanne</au><au>Zhao, Zhongying</au><au>Yan, Hong</au><au>Sahinalp, Cenk</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inference of cellular level signaling networks using single-cell gene expression data in Caenorhabditis elegans reveals mechanisms of cell fate specification</atitle><jtitle>Bioinformatics (Oxford, England)</jtitle><addtitle>Bioinformatics</addtitle><date>2017-05-15</date><risdate>2017</risdate><volume>33</volume><issue>10</issue><spage>1528</spage><epage>1535</epage><pages>1528-1535</pages><issn>1367-4803</issn><eissn>1367-4811</eissn><abstract>Cell fate specification plays a key role to generate distinct cell types during metazoan development. However, most of the underlying signaling networks at cellular level are not well understood. Availability of time lapse single-cell gene expression data collected throughout Caenorhabditis elegans embryogenesis provides an excellent opportunity for investigating signaling networks underlying cell fate specification at systems, cellular and molecular levels.
We propose a framework to infer signaling networks at cellular level by exploring the single-cell gene expression data. Through analyzing the expression data of nhr-25 , a hypodermis-specific transcription factor, in every cells of both wild-type and mutant C.elegans embryos through RNAi against 55 genes, we have inferred a total of 23 genes that regulate (activate or inhibit) nhr-25 expression in cell-specific fashion. We also infer the signaling pathways consisting of each of these genes and nhr-25 based on a probabilistic graphical model for the selected five founder cells, 'ABarp', 'ABpla', 'ABpra', 'Caa' and 'Cpa', which express nhr-25 and mostly develop into hypodermis. By integrating the inferred pathways, we reconstruct five signaling networks with one each for the five founder cells. Using RNAi gene knockdown as a validation method, the inferred networks are able to predict the effects of the knockdown genes. These signaling networks in the five founder cells are likely to ensure faithful hypodermis cell fate specification in C.elegans at cellular level.
All source codes and data are available at the github repository https://github.com/xthuang226/Worm_Single_Cell_Data_and_Codes.git .
zhuyuan@cug.edu.cn.
Supplementary data are available at Bioinformatics online.</abstract><cop>England</cop><pmid>28011782</pmid><doi>10.1093/bioinformatics/btw796</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1367-4803 |
ispartof | Bioinformatics (Oxford, England), 2017-05, Vol.33 (10), p.1528-1535 |
issn | 1367-4803 1367-4811 |
language | eng |
recordid | cdi_proquest_miscellaneous_1852787050 |
source | MEDLINE; Oxford Journals Open Access Collection; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection |
subjects | Algorithms Animals Caenorhabditis elegans - genetics Caenorhabditis elegans - growth & development Caenorhabditis elegans - metabolism Caenorhabditis elegans Proteins - genetics Caenorhabditis elegans Proteins - metabolism Cell Differentiation - genetics DNA-Binding Proteins - genetics Embryonic Development - genetics Gene Expression Profiling - methods Gene Expression Regulation, Developmental RNA Interference Signal Transduction - genetics Single-Cell Analysis - methods Transcription Factors - genetics |
title | Inference of cellular level signaling networks using single-cell gene expression data in Caenorhabditis elegans reveals mechanisms of cell fate specification |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T08%3A03%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inference%20of%20cellular%20level%20signaling%20networks%20using%20single-cell%20gene%20expression%20data%20in%20Caenorhabditis%20elegans%20reveals%20mechanisms%20of%20cell%20fate%20specification&rft.jtitle=Bioinformatics%20(Oxford,%20England)&rft.au=Huang,%20Xiao-Tai&rft.date=2017-05-15&rft.volume=33&rft.issue=10&rft.spage=1528&rft.epage=1535&rft.pages=1528-1535&rft.issn=1367-4803&rft.eissn=1367-4811&rft_id=info:doi/10.1093/bioinformatics/btw796&rft_dat=%3Cproquest_cross%3E1852787050%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1852787050&rft_id=info:pmid/28011782&rfr_iscdi=true |