Structural and Functional Effects of Cardiomyopathy-Causing Mutations in the Troponin T‑Binding Region of Cardiac Tropomyosin

Hypertrophic cardiomyopathy (HCM) is a severe heart disease caused by missense mutations in genes encoding sarcomeric proteins of cardiac muscle. Many of these mutations are identified in the gene encoding the cardiac isoform of tropomyosin (Tpm), an α-helical coiled-coil actin-binding protein that...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemistry (Easton) 2017-01, Vol.56 (1), p.250-259
Hauptverfasser: Matyushenko, Alexander M, Shchepkin, Daniil V, Kopylova, Galina V, Popruga, Katerina E, Artemova, Natalya V, Pivovarova, Anastasia V, Bershitsky, Sergey Y, Levitsky, Dmitrii I
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 259
container_issue 1
container_start_page 250
container_title Biochemistry (Easton)
container_volume 56
creator Matyushenko, Alexander M
Shchepkin, Daniil V
Kopylova, Galina V
Popruga, Katerina E
Artemova, Natalya V
Pivovarova, Anastasia V
Bershitsky, Sergey Y
Levitsky, Dmitrii I
description Hypertrophic cardiomyopathy (HCM) is a severe heart disease caused by missense mutations in genes encoding sarcomeric proteins of cardiac muscle. Many of these mutations are identified in the gene encoding the cardiac isoform of tropomyosin (Tpm), an α-helical coiled-coil actin-binding protein that plays a key role in Ca2+-regulated contraction of cardiac muscle. We employed various methods to characterize structural and functional features of recombinant human Tpm species carrying HCM mutations that lie either within the troponin T-binding region in the C-terminal part of Tpm (E180G, E180V, and L185R) or near this region (I172T). The results of our structural studies show that all these mutations affect, although differently, the thermal stability of the C-terminal part of the Tpm molecule: mutations E180G and I172T destabilize this part of the molecule, whereas mutation E180V strongly stabilizes it. Moreover, various HCM-causing mutations have different and even opposite effects on the stability of the Tpm–actin complexes. Studies of reconstituted thin filaments in the in vitro motility assay have shown that those HCM-associated mutations that lie within the troponin T-binding region of Tpm similarly increase the Ca2+ sensitivity of the sliding velocity of the filaments and impair their relaxation properties, causing a marked increase in the sliding velocity in the absence of Ca2+, while mutation I172T decreases the Ca2+ sensitivity and has no influence on the sliding velocity under relaxing conditions. Finally, our data demonstrate that various HCM mutations can differently affect the structural and functional properties of Tpm and cause HCM by different molecular mechanisms.
doi_str_mv 10.1021/acs.biochem.6b00994
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1852690756</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1852690756</sourcerecordid><originalsourceid>FETCH-LOGICAL-a345t-98d8030333f4d4fdaa13301ec8f46ec4f2d91e46a00995a9e19ed853c00150423</originalsourceid><addsrcrecordid>eNp9kMtKw0AUhgdRbL08gSBZukl7JjNJM0strQoVQes6TOfSpjSZOpdFV_oKvqJP4oRWl64OP3z_f-BD6ArDAEOGh1y4waI2YqWaQbEAYIweoT7OM0gpY_kx6gNAkWasgB46c24dI4URPUW9bMRKUuKyjz5evQ3CB8s3CW9lMg2t8LVpY5xorYR3idHJmFtZm2ZnttyvdumYB1e3y-QpeN7BLqnbxK9UMrdma9oY5t-fX3d1KzvqRS0j8zfDxR6La3HkAp1ovnHq8nDP0dt0Mh8_pLPn-8fx7SzlhOY-ZaUsgQAhRFNJteQcEwJYiVLTQgmqM8mwogXvNOScKcyULHMiAHAONCPn6Ga_u7XmPSjnq6Z2Qm02vFUmuAqXeVYwGOVFRMkeFdY4Z5WutrZuuN1VGKrOfBXNVwfz1cF8bF0fHoRFo-Rf51d1BIZ7oGuvTbDRsft38geHVZSh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1852690756</pqid></control><display><type>article</type><title>Structural and Functional Effects of Cardiomyopathy-Causing Mutations in the Troponin T‑Binding Region of Cardiac Tropomyosin</title><source>ACS Publications</source><source>MEDLINE</source><creator>Matyushenko, Alexander M ; Shchepkin, Daniil V ; Kopylova, Galina V ; Popruga, Katerina E ; Artemova, Natalya V ; Pivovarova, Anastasia V ; Bershitsky, Sergey Y ; Levitsky, Dmitrii I</creator><creatorcontrib>Matyushenko, Alexander M ; Shchepkin, Daniil V ; Kopylova, Galina V ; Popruga, Katerina E ; Artemova, Natalya V ; Pivovarova, Anastasia V ; Bershitsky, Sergey Y ; Levitsky, Dmitrii I</creatorcontrib><description>Hypertrophic cardiomyopathy (HCM) is a severe heart disease caused by missense mutations in genes encoding sarcomeric proteins of cardiac muscle. Many of these mutations are identified in the gene encoding the cardiac isoform of tropomyosin (Tpm), an α-helical coiled-coil actin-binding protein that plays a key role in Ca2+-regulated contraction of cardiac muscle. We employed various methods to characterize structural and functional features of recombinant human Tpm species carrying HCM mutations that lie either within the troponin T-binding region in the C-terminal part of Tpm (E180G, E180V, and L185R) or near this region (I172T). The results of our structural studies show that all these mutations affect, although differently, the thermal stability of the C-terminal part of the Tpm molecule: mutations E180G and I172T destabilize this part of the molecule, whereas mutation E180V strongly stabilizes it. Moreover, various HCM-causing mutations have different and even opposite effects on the stability of the Tpm–actin complexes. Studies of reconstituted thin filaments in the in vitro motility assay have shown that those HCM-associated mutations that lie within the troponin T-binding region of Tpm similarly increase the Ca2+ sensitivity of the sliding velocity of the filaments and impair their relaxation properties, causing a marked increase in the sliding velocity in the absence of Ca2+, while mutation I172T decreases the Ca2+ sensitivity and has no influence on the sliding velocity under relaxing conditions. Finally, our data demonstrate that various HCM mutations can differently affect the structural and functional properties of Tpm and cause HCM by different molecular mechanisms.</description><identifier>ISSN: 0006-2960</identifier><identifier>EISSN: 1520-4995</identifier><identifier>DOI: 10.1021/acs.biochem.6b00994</identifier><identifier>PMID: 27983818</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Actin Cytoskeleton - metabolism ; Actins - chemistry ; Actins - metabolism ; Binding Sites - genetics ; Calcium - metabolism ; Calorimetry - methods ; Cardiomyopathy, Hypertrophic - genetics ; Cardiomyopathy, Hypertrophic - metabolism ; Circular Dichroism ; Genetic Predisposition to Disease - genetics ; Humans ; Mutation, Missense ; Myocardium - metabolism ; Protein Binding ; Protein Domains ; Protein Stability ; Protein Unfolding ; Temperature ; Tropomyosin - chemistry ; Tropomyosin - genetics ; Tropomyosin - metabolism ; Troponin T - metabolism</subject><ispartof>Biochemistry (Easton), 2017-01, Vol.56 (1), p.250-259</ispartof><rights>Copyright © 2016 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a345t-98d8030333f4d4fdaa13301ec8f46ec4f2d91e46a00995a9e19ed853c00150423</citedby><cites>FETCH-LOGICAL-a345t-98d8030333f4d4fdaa13301ec8f46ec4f2d91e46a00995a9e19ed853c00150423</cites><orcidid>0000-0002-7755-9895</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.biochem.6b00994$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.biochem.6b00994$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27983818$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Matyushenko, Alexander M</creatorcontrib><creatorcontrib>Shchepkin, Daniil V</creatorcontrib><creatorcontrib>Kopylova, Galina V</creatorcontrib><creatorcontrib>Popruga, Katerina E</creatorcontrib><creatorcontrib>Artemova, Natalya V</creatorcontrib><creatorcontrib>Pivovarova, Anastasia V</creatorcontrib><creatorcontrib>Bershitsky, Sergey Y</creatorcontrib><creatorcontrib>Levitsky, Dmitrii I</creatorcontrib><title>Structural and Functional Effects of Cardiomyopathy-Causing Mutations in the Troponin T‑Binding Region of Cardiac Tropomyosin</title><title>Biochemistry (Easton)</title><addtitle>Biochemistry</addtitle><description>Hypertrophic cardiomyopathy (HCM) is a severe heart disease caused by missense mutations in genes encoding sarcomeric proteins of cardiac muscle. Many of these mutations are identified in the gene encoding the cardiac isoform of tropomyosin (Tpm), an α-helical coiled-coil actin-binding protein that plays a key role in Ca2+-regulated contraction of cardiac muscle. We employed various methods to characterize structural and functional features of recombinant human Tpm species carrying HCM mutations that lie either within the troponin T-binding region in the C-terminal part of Tpm (E180G, E180V, and L185R) or near this region (I172T). The results of our structural studies show that all these mutations affect, although differently, the thermal stability of the C-terminal part of the Tpm molecule: mutations E180G and I172T destabilize this part of the molecule, whereas mutation E180V strongly stabilizes it. Moreover, various HCM-causing mutations have different and even opposite effects on the stability of the Tpm–actin complexes. Studies of reconstituted thin filaments in the in vitro motility assay have shown that those HCM-associated mutations that lie within the troponin T-binding region of Tpm similarly increase the Ca2+ sensitivity of the sliding velocity of the filaments and impair their relaxation properties, causing a marked increase in the sliding velocity in the absence of Ca2+, while mutation I172T decreases the Ca2+ sensitivity and has no influence on the sliding velocity under relaxing conditions. Finally, our data demonstrate that various HCM mutations can differently affect the structural and functional properties of Tpm and cause HCM by different molecular mechanisms.</description><subject>Actin Cytoskeleton - metabolism</subject><subject>Actins - chemistry</subject><subject>Actins - metabolism</subject><subject>Binding Sites - genetics</subject><subject>Calcium - metabolism</subject><subject>Calorimetry - methods</subject><subject>Cardiomyopathy, Hypertrophic - genetics</subject><subject>Cardiomyopathy, Hypertrophic - metabolism</subject><subject>Circular Dichroism</subject><subject>Genetic Predisposition to Disease - genetics</subject><subject>Humans</subject><subject>Mutation, Missense</subject><subject>Myocardium - metabolism</subject><subject>Protein Binding</subject><subject>Protein Domains</subject><subject>Protein Stability</subject><subject>Protein Unfolding</subject><subject>Temperature</subject><subject>Tropomyosin - chemistry</subject><subject>Tropomyosin - genetics</subject><subject>Tropomyosin - metabolism</subject><subject>Troponin T - metabolism</subject><issn>0006-2960</issn><issn>1520-4995</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kMtKw0AUhgdRbL08gSBZukl7JjNJM0strQoVQes6TOfSpjSZOpdFV_oKvqJP4oRWl64OP3z_f-BD6ArDAEOGh1y4waI2YqWaQbEAYIweoT7OM0gpY_kx6gNAkWasgB46c24dI4URPUW9bMRKUuKyjz5evQ3CB8s3CW9lMg2t8LVpY5xorYR3idHJmFtZm2ZnttyvdumYB1e3y-QpeN7BLqnbxK9UMrdma9oY5t-fX3d1KzvqRS0j8zfDxR6La3HkAp1ovnHq8nDP0dt0Mh8_pLPn-8fx7SzlhOY-ZaUsgQAhRFNJteQcEwJYiVLTQgmqM8mwogXvNOScKcyULHMiAHAONCPn6Ga_u7XmPSjnq6Z2Qm02vFUmuAqXeVYwGOVFRMkeFdY4Z5WutrZuuN1VGKrOfBXNVwfz1cF8bF0fHoRFo-Rf51d1BIZ7oGuvTbDRsft38geHVZSh</recordid><startdate>20170110</startdate><enddate>20170110</enddate><creator>Matyushenko, Alexander M</creator><creator>Shchepkin, Daniil V</creator><creator>Kopylova, Galina V</creator><creator>Popruga, Katerina E</creator><creator>Artemova, Natalya V</creator><creator>Pivovarova, Anastasia V</creator><creator>Bershitsky, Sergey Y</creator><creator>Levitsky, Dmitrii I</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7755-9895</orcidid></search><sort><creationdate>20170110</creationdate><title>Structural and Functional Effects of Cardiomyopathy-Causing Mutations in the Troponin T‑Binding Region of Cardiac Tropomyosin</title><author>Matyushenko, Alexander M ; Shchepkin, Daniil V ; Kopylova, Galina V ; Popruga, Katerina E ; Artemova, Natalya V ; Pivovarova, Anastasia V ; Bershitsky, Sergey Y ; Levitsky, Dmitrii I</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a345t-98d8030333f4d4fdaa13301ec8f46ec4f2d91e46a00995a9e19ed853c00150423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Actin Cytoskeleton - metabolism</topic><topic>Actins - chemistry</topic><topic>Actins - metabolism</topic><topic>Binding Sites - genetics</topic><topic>Calcium - metabolism</topic><topic>Calorimetry - methods</topic><topic>Cardiomyopathy, Hypertrophic - genetics</topic><topic>Cardiomyopathy, Hypertrophic - metabolism</topic><topic>Circular Dichroism</topic><topic>Genetic Predisposition to Disease - genetics</topic><topic>Humans</topic><topic>Mutation, Missense</topic><topic>Myocardium - metabolism</topic><topic>Protein Binding</topic><topic>Protein Domains</topic><topic>Protein Stability</topic><topic>Protein Unfolding</topic><topic>Temperature</topic><topic>Tropomyosin - chemistry</topic><topic>Tropomyosin - genetics</topic><topic>Tropomyosin - metabolism</topic><topic>Troponin T - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Matyushenko, Alexander M</creatorcontrib><creatorcontrib>Shchepkin, Daniil V</creatorcontrib><creatorcontrib>Kopylova, Galina V</creatorcontrib><creatorcontrib>Popruga, Katerina E</creatorcontrib><creatorcontrib>Artemova, Natalya V</creatorcontrib><creatorcontrib>Pivovarova, Anastasia V</creatorcontrib><creatorcontrib>Bershitsky, Sergey Y</creatorcontrib><creatorcontrib>Levitsky, Dmitrii I</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Biochemistry (Easton)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Matyushenko, Alexander M</au><au>Shchepkin, Daniil V</au><au>Kopylova, Galina V</au><au>Popruga, Katerina E</au><au>Artemova, Natalya V</au><au>Pivovarova, Anastasia V</au><au>Bershitsky, Sergey Y</au><au>Levitsky, Dmitrii I</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural and Functional Effects of Cardiomyopathy-Causing Mutations in the Troponin T‑Binding Region of Cardiac Tropomyosin</atitle><jtitle>Biochemistry (Easton)</jtitle><addtitle>Biochemistry</addtitle><date>2017-01-10</date><risdate>2017</risdate><volume>56</volume><issue>1</issue><spage>250</spage><epage>259</epage><pages>250-259</pages><issn>0006-2960</issn><eissn>1520-4995</eissn><abstract>Hypertrophic cardiomyopathy (HCM) is a severe heart disease caused by missense mutations in genes encoding sarcomeric proteins of cardiac muscle. Many of these mutations are identified in the gene encoding the cardiac isoform of tropomyosin (Tpm), an α-helical coiled-coil actin-binding protein that plays a key role in Ca2+-regulated contraction of cardiac muscle. We employed various methods to characterize structural and functional features of recombinant human Tpm species carrying HCM mutations that lie either within the troponin T-binding region in the C-terminal part of Tpm (E180G, E180V, and L185R) or near this region (I172T). The results of our structural studies show that all these mutations affect, although differently, the thermal stability of the C-terminal part of the Tpm molecule: mutations E180G and I172T destabilize this part of the molecule, whereas mutation E180V strongly stabilizes it. Moreover, various HCM-causing mutations have different and even opposite effects on the stability of the Tpm–actin complexes. Studies of reconstituted thin filaments in the in vitro motility assay have shown that those HCM-associated mutations that lie within the troponin T-binding region of Tpm similarly increase the Ca2+ sensitivity of the sliding velocity of the filaments and impair their relaxation properties, causing a marked increase in the sliding velocity in the absence of Ca2+, while mutation I172T decreases the Ca2+ sensitivity and has no influence on the sliding velocity under relaxing conditions. Finally, our data demonstrate that various HCM mutations can differently affect the structural and functional properties of Tpm and cause HCM by different molecular mechanisms.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>27983818</pmid><doi>10.1021/acs.biochem.6b00994</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-7755-9895</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0006-2960
ispartof Biochemistry (Easton), 2017-01, Vol.56 (1), p.250-259
issn 0006-2960
1520-4995
language eng
recordid cdi_proquest_miscellaneous_1852690756
source ACS Publications; MEDLINE
subjects Actin Cytoskeleton - metabolism
Actins - chemistry
Actins - metabolism
Binding Sites - genetics
Calcium - metabolism
Calorimetry - methods
Cardiomyopathy, Hypertrophic - genetics
Cardiomyopathy, Hypertrophic - metabolism
Circular Dichroism
Genetic Predisposition to Disease - genetics
Humans
Mutation, Missense
Myocardium - metabolism
Protein Binding
Protein Domains
Protein Stability
Protein Unfolding
Temperature
Tropomyosin - chemistry
Tropomyosin - genetics
Tropomyosin - metabolism
Troponin T - metabolism
title Structural and Functional Effects of Cardiomyopathy-Causing Mutations in the Troponin T‑Binding Region of Cardiac Tropomyosin
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T02%3A54%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20and%20Functional%20Effects%20of%20Cardiomyopathy-Causing%20Mutations%20in%20the%20Troponin%20T%E2%80%91Binding%20Region%20of%20Cardiac%20Tropomyosin&rft.jtitle=Biochemistry%20(Easton)&rft.au=Matyushenko,%20Alexander%20M&rft.date=2017-01-10&rft.volume=56&rft.issue=1&rft.spage=250&rft.epage=259&rft.pages=250-259&rft.issn=0006-2960&rft.eissn=1520-4995&rft_id=info:doi/10.1021/acs.biochem.6b00994&rft_dat=%3Cproquest_cross%3E1852690756%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1852690756&rft_id=info:pmid/27983818&rfr_iscdi=true