Hybrid Palladium Nanoparticles for Direct Hydrogen Peroxide Synthesis: The Key Role of the Ligand

Ligand‐modified palladium nanoparticles deposited on a carbon carrier efficiently catalyze the direct synthesis of H2O2 and the unique performance is due to their hybrid nanostructure. Catalytic testing demonstrated that the selectivity increases with the HHDMA ligand content from 10 % for naked nan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie International Edition 2017-02, Vol.56 (7), p.1775-1779
Hauptverfasser: Lari, Giacomo M., Puértolas, Begoña, Shahrokhi, Masoud, López, Núria, Pérez‐Ramírez, Javier
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1779
container_issue 7
container_start_page 1775
container_title Angewandte Chemie International Edition
container_volume 56
creator Lari, Giacomo M.
Puértolas, Begoña
Shahrokhi, Masoud
López, Núria
Pérez‐Ramírez, Javier
description Ligand‐modified palladium nanoparticles deposited on a carbon carrier efficiently catalyze the direct synthesis of H2O2 and the unique performance is due to their hybrid nanostructure. Catalytic testing demonstrated that the selectivity increases with the HHDMA ligand content from 10 % for naked nanoparticles up to 80 %, rivalling that obtained with state‐of‐the‐art bimetallic catalysts (HHDMA=C20H46NO5P). Furthermore, it remains stable over five consecutive reaction runs owing to the high resistance towards leaching of the organic moiety, arising from its bond with the metal surface. As rationalized by density functional theory, this behavior is attributed to the adsorption mode of the reaction intermediates on the metal surface. Whereas they lie flat in the absence of the organic shell, their electrostatic interaction with the ligand result in a unique vertical configuration which prevents further dissociation and over‐hydrogenation. These findings demonstrate the importance of understanding substrate–ligand interactions in capped nanoparticles to develop smart catalysts for the sustainable manufacture of hydrogen peroxide. In the ligand we trust: Hybrid palladium nanoparticles are selective and stable catalysts for direct hydrogen peroxide synthesis. A ligand stabilizes the hydroperoxy intermediate in a vertical configuration preventing side reactions (dissociation and over‐hydrogenation) compared to naked metal nanoparticles, where flat intermediates are readily converted to water.
doi_str_mv 10.1002/anie.201610552
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1852686962</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1852686962</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5442-4147873d4bc8ce66f00918c35d943abcdd7f3b8f1e7806f217600e53887f31bd3</originalsourceid><addsrcrecordid>eNqF0cFPFDEUBvDGaATRq0fTxAuXWfvaTtvxRhBc4gaJ4nnSad9Ayex0bXcC899bsoiJBzi1efn1S18-Qt4DWwBj_JMdAy44AwWsrvkLsg81h0poLV6WuxSi0qaGPfIm55vijWHqNdnjujGgge0Tu5y7FDy9sMNgfZjW9NyOcWPTNrgBM-1jol9CQrely9mneIUjvcAU74JH-nMet9eYQ_5ML6-RfsOZ_ogD0tjTMqercGVH_5a86u2Q8d3DeUB-nZ5cHi-r1fevZ8dHq8rVUvJKgtRGCy87Zxwq1TPWgHGi9o0UtnPe6150pgfUZYeeg1aMYS2MKXPovDggh7vcTYq_J8zbdh2yw7LWiHHKLZiaK6MaxQv9-B-9iVMay-9aaIBLqZh8WhnFlWJasKIWO-VSzDlh325SWNs0t8Da-4ra-4rax4rKgw8PsVO3Rv_I_3ZSQLMDt2HA-Zm49uj87ORf-B-owJrU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1862660730</pqid></control><display><type>article</type><title>Hybrid Palladium Nanoparticles for Direct Hydrogen Peroxide Synthesis: The Key Role of the Ligand</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Lari, Giacomo M. ; Puértolas, Begoña ; Shahrokhi, Masoud ; López, Núria ; Pérez‐Ramírez, Javier</creator><creatorcontrib>Lari, Giacomo M. ; Puértolas, Begoña ; Shahrokhi, Masoud ; López, Núria ; Pérez‐Ramírez, Javier</creatorcontrib><description>Ligand‐modified palladium nanoparticles deposited on a carbon carrier efficiently catalyze the direct synthesis of H2O2 and the unique performance is due to their hybrid nanostructure. Catalytic testing demonstrated that the selectivity increases with the HHDMA ligand content from 10 % for naked nanoparticles up to 80 %, rivalling that obtained with state‐of‐the‐art bimetallic catalysts (HHDMA=C20H46NO5P). Furthermore, it remains stable over five consecutive reaction runs owing to the high resistance towards leaching of the organic moiety, arising from its bond with the metal surface. As rationalized by density functional theory, this behavior is attributed to the adsorption mode of the reaction intermediates on the metal surface. Whereas they lie flat in the absence of the organic shell, their electrostatic interaction with the ligand result in a unique vertical configuration which prevents further dissociation and over‐hydrogenation. These findings demonstrate the importance of understanding substrate–ligand interactions in capped nanoparticles to develop smart catalysts for the sustainable manufacture of hydrogen peroxide. In the ligand we trust: Hybrid palladium nanoparticles are selective and stable catalysts for direct hydrogen peroxide synthesis. A ligand stabilizes the hydroperoxy intermediate in a vertical configuration preventing side reactions (dissociation and over‐hydrogenation) compared to naked metal nanoparticles, where flat intermediates are readily converted to water.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.201610552</identifier><identifier>PMID: 27981710</identifier><identifier>CODEN: ACIEAY</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Adsorption ; Bimetals ; Catalysts ; Chemical synthesis ; colloidal synthesis ; density functional calculations ; Density functional theory ; Electrostatic properties ; High resistance ; hybrid catalysts ; Hydrogen peroxide ; Hydrogen storage ; Hydrogenation ; Intermediates ; Leaching ; Ligands ; Metals ; Nanoparticles ; Nanostructure ; Palladium ; palladium nanoparticles ; peroxides ; Selectivity ; Surface chemistry ; Sustainable production</subject><ispartof>Angewandte Chemie International Edition, 2017-02, Vol.56 (7), p.1775-1779</ispartof><rights>2017 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2017 Wiley-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>2017 Wiley-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5442-4147873d4bc8ce66f00918c35d943abcdd7f3b8f1e7806f217600e53887f31bd3</citedby><cites>FETCH-LOGICAL-c5442-4147873d4bc8ce66f00918c35d943abcdd7f3b8f1e7806f217600e53887f31bd3</cites><orcidid>0000-0002-5805-7355</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.201610552$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.201610552$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27981710$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lari, Giacomo M.</creatorcontrib><creatorcontrib>Puértolas, Begoña</creatorcontrib><creatorcontrib>Shahrokhi, Masoud</creatorcontrib><creatorcontrib>López, Núria</creatorcontrib><creatorcontrib>Pérez‐Ramírez, Javier</creatorcontrib><title>Hybrid Palladium Nanoparticles for Direct Hydrogen Peroxide Synthesis: The Key Role of the Ligand</title><title>Angewandte Chemie International Edition</title><addtitle>Angew Chem Int Ed Engl</addtitle><description>Ligand‐modified palladium nanoparticles deposited on a carbon carrier efficiently catalyze the direct synthesis of H2O2 and the unique performance is due to their hybrid nanostructure. Catalytic testing demonstrated that the selectivity increases with the HHDMA ligand content from 10 % for naked nanoparticles up to 80 %, rivalling that obtained with state‐of‐the‐art bimetallic catalysts (HHDMA=C20H46NO5P). Furthermore, it remains stable over five consecutive reaction runs owing to the high resistance towards leaching of the organic moiety, arising from its bond with the metal surface. As rationalized by density functional theory, this behavior is attributed to the adsorption mode of the reaction intermediates on the metal surface. Whereas they lie flat in the absence of the organic shell, their electrostatic interaction with the ligand result in a unique vertical configuration which prevents further dissociation and over‐hydrogenation. These findings demonstrate the importance of understanding substrate–ligand interactions in capped nanoparticles to develop smart catalysts for the sustainable manufacture of hydrogen peroxide. In the ligand we trust: Hybrid palladium nanoparticles are selective and stable catalysts for direct hydrogen peroxide synthesis. A ligand stabilizes the hydroperoxy intermediate in a vertical configuration preventing side reactions (dissociation and over‐hydrogenation) compared to naked metal nanoparticles, where flat intermediates are readily converted to water.</description><subject>Adsorption</subject><subject>Bimetals</subject><subject>Catalysts</subject><subject>Chemical synthesis</subject><subject>colloidal synthesis</subject><subject>density functional calculations</subject><subject>Density functional theory</subject><subject>Electrostatic properties</subject><subject>High resistance</subject><subject>hybrid catalysts</subject><subject>Hydrogen peroxide</subject><subject>Hydrogen storage</subject><subject>Hydrogenation</subject><subject>Intermediates</subject><subject>Leaching</subject><subject>Ligands</subject><subject>Metals</subject><subject>Nanoparticles</subject><subject>Nanostructure</subject><subject>Palladium</subject><subject>palladium nanoparticles</subject><subject>peroxides</subject><subject>Selectivity</subject><subject>Surface chemistry</subject><subject>Sustainable production</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqF0cFPFDEUBvDGaATRq0fTxAuXWfvaTtvxRhBc4gaJ4nnSad9Ayex0bXcC899bsoiJBzi1efn1S18-Qt4DWwBj_JMdAy44AwWsrvkLsg81h0poLV6WuxSi0qaGPfIm55vijWHqNdnjujGgge0Tu5y7FDy9sMNgfZjW9NyOcWPTNrgBM-1jol9CQrely9mneIUjvcAU74JH-nMet9eYQ_5ML6-RfsOZ_ogD0tjTMqercGVH_5a86u2Q8d3DeUB-nZ5cHi-r1fevZ8dHq8rVUvJKgtRGCy87Zxwq1TPWgHGi9o0UtnPe6150pgfUZYeeg1aMYS2MKXPovDggh7vcTYq_J8zbdh2yw7LWiHHKLZiaK6MaxQv9-B-9iVMay-9aaIBLqZh8WhnFlWJasKIWO-VSzDlh325SWNs0t8Da-4ra-4rax4rKgw8PsVO3Rv_I_3ZSQLMDt2HA-Zm49uj87ORf-B-owJrU</recordid><startdate>20170206</startdate><enddate>20170206</enddate><creator>Lari, Giacomo M.</creator><creator>Puértolas, Begoña</creator><creator>Shahrokhi, Masoud</creator><creator>López, Núria</creator><creator>Pérez‐Ramírez, Javier</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5805-7355</orcidid></search><sort><creationdate>20170206</creationdate><title>Hybrid Palladium Nanoparticles for Direct Hydrogen Peroxide Synthesis: The Key Role of the Ligand</title><author>Lari, Giacomo M. ; Puértolas, Begoña ; Shahrokhi, Masoud ; López, Núria ; Pérez‐Ramírez, Javier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5442-4147873d4bc8ce66f00918c35d943abcdd7f3b8f1e7806f217600e53887f31bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adsorption</topic><topic>Bimetals</topic><topic>Catalysts</topic><topic>Chemical synthesis</topic><topic>colloidal synthesis</topic><topic>density functional calculations</topic><topic>Density functional theory</topic><topic>Electrostatic properties</topic><topic>High resistance</topic><topic>hybrid catalysts</topic><topic>Hydrogen peroxide</topic><topic>Hydrogen storage</topic><topic>Hydrogenation</topic><topic>Intermediates</topic><topic>Leaching</topic><topic>Ligands</topic><topic>Metals</topic><topic>Nanoparticles</topic><topic>Nanostructure</topic><topic>Palladium</topic><topic>palladium nanoparticles</topic><topic>peroxides</topic><topic>Selectivity</topic><topic>Surface chemistry</topic><topic>Sustainable production</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lari, Giacomo M.</creatorcontrib><creatorcontrib>Puértolas, Begoña</creatorcontrib><creatorcontrib>Shahrokhi, Masoud</creatorcontrib><creatorcontrib>López, Núria</creatorcontrib><creatorcontrib>Pérez‐Ramírez, Javier</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lari, Giacomo M.</au><au>Puértolas, Begoña</au><au>Shahrokhi, Masoud</au><au>López, Núria</au><au>Pérez‐Ramírez, Javier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hybrid Palladium Nanoparticles for Direct Hydrogen Peroxide Synthesis: The Key Role of the Ligand</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew Chem Int Ed Engl</addtitle><date>2017-02-06</date><risdate>2017</risdate><volume>56</volume><issue>7</issue><spage>1775</spage><epage>1779</epage><pages>1775-1779</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><coden>ACIEAY</coden><abstract>Ligand‐modified palladium nanoparticles deposited on a carbon carrier efficiently catalyze the direct synthesis of H2O2 and the unique performance is due to their hybrid nanostructure. Catalytic testing demonstrated that the selectivity increases with the HHDMA ligand content from 10 % for naked nanoparticles up to 80 %, rivalling that obtained with state‐of‐the‐art bimetallic catalysts (HHDMA=C20H46NO5P). Furthermore, it remains stable over five consecutive reaction runs owing to the high resistance towards leaching of the organic moiety, arising from its bond with the metal surface. As rationalized by density functional theory, this behavior is attributed to the adsorption mode of the reaction intermediates on the metal surface. Whereas they lie flat in the absence of the organic shell, their electrostatic interaction with the ligand result in a unique vertical configuration which prevents further dissociation and over‐hydrogenation. These findings demonstrate the importance of understanding substrate–ligand interactions in capped nanoparticles to develop smart catalysts for the sustainable manufacture of hydrogen peroxide. In the ligand we trust: Hybrid palladium nanoparticles are selective and stable catalysts for direct hydrogen peroxide synthesis. A ligand stabilizes the hydroperoxy intermediate in a vertical configuration preventing side reactions (dissociation and over‐hydrogenation) compared to naked metal nanoparticles, where flat intermediates are readily converted to water.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>27981710</pmid><doi>10.1002/anie.201610552</doi><tpages>5</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0002-5805-7355</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1433-7851
ispartof Angewandte Chemie International Edition, 2017-02, Vol.56 (7), p.1775-1779
issn 1433-7851
1521-3773
language eng
recordid cdi_proquest_miscellaneous_1852686962
source Wiley Online Library Journals Frontfile Complete
subjects Adsorption
Bimetals
Catalysts
Chemical synthesis
colloidal synthesis
density functional calculations
Density functional theory
Electrostatic properties
High resistance
hybrid catalysts
Hydrogen peroxide
Hydrogen storage
Hydrogenation
Intermediates
Leaching
Ligands
Metals
Nanoparticles
Nanostructure
Palladium
palladium nanoparticles
peroxides
Selectivity
Surface chemistry
Sustainable production
title Hybrid Palladium Nanoparticles for Direct Hydrogen Peroxide Synthesis: The Key Role of the Ligand
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T06%3A15%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hybrid%20Palladium%20Nanoparticles%20for%20Direct%20Hydrogen%20Peroxide%20Synthesis:%20The%20Key%20Role%20of%20the%20Ligand&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Lari,%20Giacomo%20M.&rft.date=2017-02-06&rft.volume=56&rft.issue=7&rft.spage=1775&rft.epage=1779&rft.pages=1775-1779&rft.issn=1433-7851&rft.eissn=1521-3773&rft.coden=ACIEAY&rft_id=info:doi/10.1002/anie.201610552&rft_dat=%3Cproquest_cross%3E1852686962%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1862660730&rft_id=info:pmid/27981710&rfr_iscdi=true