Hybrid Palladium Nanoparticles for Direct Hydrogen Peroxide Synthesis: The Key Role of the Ligand
Ligand‐modified palladium nanoparticles deposited on a carbon carrier efficiently catalyze the direct synthesis of H2O2 and the unique performance is due to their hybrid nanostructure. Catalytic testing demonstrated that the selectivity increases with the HHDMA ligand content from 10 % for naked nan...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie International Edition 2017-02, Vol.56 (7), p.1775-1779 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1779 |
---|---|
container_issue | 7 |
container_start_page | 1775 |
container_title | Angewandte Chemie International Edition |
container_volume | 56 |
creator | Lari, Giacomo M. Puértolas, Begoña Shahrokhi, Masoud López, Núria Pérez‐Ramírez, Javier |
description | Ligand‐modified palladium nanoparticles deposited on a carbon carrier efficiently catalyze the direct synthesis of H2O2 and the unique performance is due to their hybrid nanostructure. Catalytic testing demonstrated that the selectivity increases with the HHDMA ligand content from 10 % for naked nanoparticles up to 80 %, rivalling that obtained with state‐of‐the‐art bimetallic catalysts (HHDMA=C20H46NO5P). Furthermore, it remains stable over five consecutive reaction runs owing to the high resistance towards leaching of the organic moiety, arising from its bond with the metal surface. As rationalized by density functional theory, this behavior is attributed to the adsorption mode of the reaction intermediates on the metal surface. Whereas they lie flat in the absence of the organic shell, their electrostatic interaction with the ligand result in a unique vertical configuration which prevents further dissociation and over‐hydrogenation. These findings demonstrate the importance of understanding substrate–ligand interactions in capped nanoparticles to develop smart catalysts for the sustainable manufacture of hydrogen peroxide.
In the ligand we trust: Hybrid palladium nanoparticles are selective and stable catalysts for direct hydrogen peroxide synthesis. A ligand stabilizes the hydroperoxy intermediate in a vertical configuration preventing side reactions (dissociation and over‐hydrogenation) compared to naked metal nanoparticles, where flat intermediates are readily converted to water. |
doi_str_mv | 10.1002/anie.201610552 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1852686962</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1852686962</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5442-4147873d4bc8ce66f00918c35d943abcdd7f3b8f1e7806f217600e53887f31bd3</originalsourceid><addsrcrecordid>eNqF0cFPFDEUBvDGaATRq0fTxAuXWfvaTtvxRhBc4gaJ4nnSad9Ayex0bXcC899bsoiJBzi1efn1S18-Qt4DWwBj_JMdAy44AwWsrvkLsg81h0poLV6WuxSi0qaGPfIm55vijWHqNdnjujGgge0Tu5y7FDy9sMNgfZjW9NyOcWPTNrgBM-1jol9CQrely9mneIUjvcAU74JH-nMet9eYQ_5ML6-RfsOZ_ogD0tjTMqercGVH_5a86u2Q8d3DeUB-nZ5cHi-r1fevZ8dHq8rVUvJKgtRGCy87Zxwq1TPWgHGi9o0UtnPe6150pgfUZYeeg1aMYS2MKXPovDggh7vcTYq_J8zbdh2yw7LWiHHKLZiaK6MaxQv9-B-9iVMay-9aaIBLqZh8WhnFlWJasKIWO-VSzDlh325SWNs0t8Da-4ra-4rax4rKgw8PsVO3Rv_I_3ZSQLMDt2HA-Zm49uj87ORf-B-owJrU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1862660730</pqid></control><display><type>article</type><title>Hybrid Palladium Nanoparticles for Direct Hydrogen Peroxide Synthesis: The Key Role of the Ligand</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Lari, Giacomo M. ; Puértolas, Begoña ; Shahrokhi, Masoud ; López, Núria ; Pérez‐Ramírez, Javier</creator><creatorcontrib>Lari, Giacomo M. ; Puértolas, Begoña ; Shahrokhi, Masoud ; López, Núria ; Pérez‐Ramírez, Javier</creatorcontrib><description>Ligand‐modified palladium nanoparticles deposited on a carbon carrier efficiently catalyze the direct synthesis of H2O2 and the unique performance is due to their hybrid nanostructure. Catalytic testing demonstrated that the selectivity increases with the HHDMA ligand content from 10 % for naked nanoparticles up to 80 %, rivalling that obtained with state‐of‐the‐art bimetallic catalysts (HHDMA=C20H46NO5P). Furthermore, it remains stable over five consecutive reaction runs owing to the high resistance towards leaching of the organic moiety, arising from its bond with the metal surface. As rationalized by density functional theory, this behavior is attributed to the adsorption mode of the reaction intermediates on the metal surface. Whereas they lie flat in the absence of the organic shell, their electrostatic interaction with the ligand result in a unique vertical configuration which prevents further dissociation and over‐hydrogenation. These findings demonstrate the importance of understanding substrate–ligand interactions in capped nanoparticles to develop smart catalysts for the sustainable manufacture of hydrogen peroxide.
In the ligand we trust: Hybrid palladium nanoparticles are selective and stable catalysts for direct hydrogen peroxide synthesis. A ligand stabilizes the hydroperoxy intermediate in a vertical configuration preventing side reactions (dissociation and over‐hydrogenation) compared to naked metal nanoparticles, where flat intermediates are readily converted to water.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.201610552</identifier><identifier>PMID: 27981710</identifier><identifier>CODEN: ACIEAY</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Adsorption ; Bimetals ; Catalysts ; Chemical synthesis ; colloidal synthesis ; density functional calculations ; Density functional theory ; Electrostatic properties ; High resistance ; hybrid catalysts ; Hydrogen peroxide ; Hydrogen storage ; Hydrogenation ; Intermediates ; Leaching ; Ligands ; Metals ; Nanoparticles ; Nanostructure ; Palladium ; palladium nanoparticles ; peroxides ; Selectivity ; Surface chemistry ; Sustainable production</subject><ispartof>Angewandte Chemie International Edition, 2017-02, Vol.56 (7), p.1775-1779</ispartof><rights>2017 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><rights>2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5442-4147873d4bc8ce66f00918c35d943abcdd7f3b8f1e7806f217600e53887f31bd3</citedby><cites>FETCH-LOGICAL-c5442-4147873d4bc8ce66f00918c35d943abcdd7f3b8f1e7806f217600e53887f31bd3</cites><orcidid>0000-0002-5805-7355</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.201610552$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.201610552$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27981710$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lari, Giacomo M.</creatorcontrib><creatorcontrib>Puértolas, Begoña</creatorcontrib><creatorcontrib>Shahrokhi, Masoud</creatorcontrib><creatorcontrib>López, Núria</creatorcontrib><creatorcontrib>Pérez‐Ramírez, Javier</creatorcontrib><title>Hybrid Palladium Nanoparticles for Direct Hydrogen Peroxide Synthesis: The Key Role of the Ligand</title><title>Angewandte Chemie International Edition</title><addtitle>Angew Chem Int Ed Engl</addtitle><description>Ligand‐modified palladium nanoparticles deposited on a carbon carrier efficiently catalyze the direct synthesis of H2O2 and the unique performance is due to their hybrid nanostructure. Catalytic testing demonstrated that the selectivity increases with the HHDMA ligand content from 10 % for naked nanoparticles up to 80 %, rivalling that obtained with state‐of‐the‐art bimetallic catalysts (HHDMA=C20H46NO5P). Furthermore, it remains stable over five consecutive reaction runs owing to the high resistance towards leaching of the organic moiety, arising from its bond with the metal surface. As rationalized by density functional theory, this behavior is attributed to the adsorption mode of the reaction intermediates on the metal surface. Whereas they lie flat in the absence of the organic shell, their electrostatic interaction with the ligand result in a unique vertical configuration which prevents further dissociation and over‐hydrogenation. These findings demonstrate the importance of understanding substrate–ligand interactions in capped nanoparticles to develop smart catalysts for the sustainable manufacture of hydrogen peroxide.
In the ligand we trust: Hybrid palladium nanoparticles are selective and stable catalysts for direct hydrogen peroxide synthesis. A ligand stabilizes the hydroperoxy intermediate in a vertical configuration preventing side reactions (dissociation and over‐hydrogenation) compared to naked metal nanoparticles, where flat intermediates are readily converted to water.</description><subject>Adsorption</subject><subject>Bimetals</subject><subject>Catalysts</subject><subject>Chemical synthesis</subject><subject>colloidal synthesis</subject><subject>density functional calculations</subject><subject>Density functional theory</subject><subject>Electrostatic properties</subject><subject>High resistance</subject><subject>hybrid catalysts</subject><subject>Hydrogen peroxide</subject><subject>Hydrogen storage</subject><subject>Hydrogenation</subject><subject>Intermediates</subject><subject>Leaching</subject><subject>Ligands</subject><subject>Metals</subject><subject>Nanoparticles</subject><subject>Nanostructure</subject><subject>Palladium</subject><subject>palladium nanoparticles</subject><subject>peroxides</subject><subject>Selectivity</subject><subject>Surface chemistry</subject><subject>Sustainable production</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqF0cFPFDEUBvDGaATRq0fTxAuXWfvaTtvxRhBc4gaJ4nnSad9Ayex0bXcC899bsoiJBzi1efn1S18-Qt4DWwBj_JMdAy44AwWsrvkLsg81h0poLV6WuxSi0qaGPfIm55vijWHqNdnjujGgge0Tu5y7FDy9sMNgfZjW9NyOcWPTNrgBM-1jol9CQrely9mneIUjvcAU74JH-nMet9eYQ_5ML6-RfsOZ_ogD0tjTMqercGVH_5a86u2Q8d3DeUB-nZ5cHi-r1fevZ8dHq8rVUvJKgtRGCy87Zxwq1TPWgHGi9o0UtnPe6150pgfUZYeeg1aMYS2MKXPovDggh7vcTYq_J8zbdh2yw7LWiHHKLZiaK6MaxQv9-B-9iVMay-9aaIBLqZh8WhnFlWJasKIWO-VSzDlh325SWNs0t8Da-4ra-4rax4rKgw8PsVO3Rv_I_3ZSQLMDt2HA-Zm49uj87ORf-B-owJrU</recordid><startdate>20170206</startdate><enddate>20170206</enddate><creator>Lari, Giacomo M.</creator><creator>Puértolas, Begoña</creator><creator>Shahrokhi, Masoud</creator><creator>López, Núria</creator><creator>Pérez‐Ramírez, Javier</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5805-7355</orcidid></search><sort><creationdate>20170206</creationdate><title>Hybrid Palladium Nanoparticles for Direct Hydrogen Peroxide Synthesis: The Key Role of the Ligand</title><author>Lari, Giacomo M. ; Puértolas, Begoña ; Shahrokhi, Masoud ; López, Núria ; Pérez‐Ramírez, Javier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5442-4147873d4bc8ce66f00918c35d943abcdd7f3b8f1e7806f217600e53887f31bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adsorption</topic><topic>Bimetals</topic><topic>Catalysts</topic><topic>Chemical synthesis</topic><topic>colloidal synthesis</topic><topic>density functional calculations</topic><topic>Density functional theory</topic><topic>Electrostatic properties</topic><topic>High resistance</topic><topic>hybrid catalysts</topic><topic>Hydrogen peroxide</topic><topic>Hydrogen storage</topic><topic>Hydrogenation</topic><topic>Intermediates</topic><topic>Leaching</topic><topic>Ligands</topic><topic>Metals</topic><topic>Nanoparticles</topic><topic>Nanostructure</topic><topic>Palladium</topic><topic>palladium nanoparticles</topic><topic>peroxides</topic><topic>Selectivity</topic><topic>Surface chemistry</topic><topic>Sustainable production</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lari, Giacomo M.</creatorcontrib><creatorcontrib>Puértolas, Begoña</creatorcontrib><creatorcontrib>Shahrokhi, Masoud</creatorcontrib><creatorcontrib>López, Núria</creatorcontrib><creatorcontrib>Pérez‐Ramírez, Javier</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lari, Giacomo M.</au><au>Puértolas, Begoña</au><au>Shahrokhi, Masoud</au><au>López, Núria</au><au>Pérez‐Ramírez, Javier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hybrid Palladium Nanoparticles for Direct Hydrogen Peroxide Synthesis: The Key Role of the Ligand</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew Chem Int Ed Engl</addtitle><date>2017-02-06</date><risdate>2017</risdate><volume>56</volume><issue>7</issue><spage>1775</spage><epage>1779</epage><pages>1775-1779</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><coden>ACIEAY</coden><abstract>Ligand‐modified palladium nanoparticles deposited on a carbon carrier efficiently catalyze the direct synthesis of H2O2 and the unique performance is due to their hybrid nanostructure. Catalytic testing demonstrated that the selectivity increases with the HHDMA ligand content from 10 % for naked nanoparticles up to 80 %, rivalling that obtained with state‐of‐the‐art bimetallic catalysts (HHDMA=C20H46NO5P). Furthermore, it remains stable over five consecutive reaction runs owing to the high resistance towards leaching of the organic moiety, arising from its bond with the metal surface. As rationalized by density functional theory, this behavior is attributed to the adsorption mode of the reaction intermediates on the metal surface. Whereas they lie flat in the absence of the organic shell, their electrostatic interaction with the ligand result in a unique vertical configuration which prevents further dissociation and over‐hydrogenation. These findings demonstrate the importance of understanding substrate–ligand interactions in capped nanoparticles to develop smart catalysts for the sustainable manufacture of hydrogen peroxide.
In the ligand we trust: Hybrid palladium nanoparticles are selective and stable catalysts for direct hydrogen peroxide synthesis. A ligand stabilizes the hydroperoxy intermediate in a vertical configuration preventing side reactions (dissociation and over‐hydrogenation) compared to naked metal nanoparticles, where flat intermediates are readily converted to water.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>27981710</pmid><doi>10.1002/anie.201610552</doi><tpages>5</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0002-5805-7355</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1433-7851 |
ispartof | Angewandte Chemie International Edition, 2017-02, Vol.56 (7), p.1775-1779 |
issn | 1433-7851 1521-3773 |
language | eng |
recordid | cdi_proquest_miscellaneous_1852686962 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Adsorption Bimetals Catalysts Chemical synthesis colloidal synthesis density functional calculations Density functional theory Electrostatic properties High resistance hybrid catalysts Hydrogen peroxide Hydrogen storage Hydrogenation Intermediates Leaching Ligands Metals Nanoparticles Nanostructure Palladium palladium nanoparticles peroxides Selectivity Surface chemistry Sustainable production |
title | Hybrid Palladium Nanoparticles for Direct Hydrogen Peroxide Synthesis: The Key Role of the Ligand |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T06%3A15%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hybrid%20Palladium%20Nanoparticles%20for%20Direct%20Hydrogen%20Peroxide%20Synthesis:%20The%20Key%20Role%20of%20the%20Ligand&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Lari,%20Giacomo%20M.&rft.date=2017-02-06&rft.volume=56&rft.issue=7&rft.spage=1775&rft.epage=1779&rft.pages=1775-1779&rft.issn=1433-7851&rft.eissn=1521-3773&rft.coden=ACIEAY&rft_id=info:doi/10.1002/anie.201610552&rft_dat=%3Cproquest_cross%3E1852686962%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1862660730&rft_id=info:pmid/27981710&rfr_iscdi=true |