Unveiling the Pathogenic Molecular Mechanisms of the Most Common Variant (p.K329E) in Medium-Chain Acyl-CoA Dehydrogenase Deficiency by in Vitro and in Silico Approaches

Medium-chain acyl-CoA dehydrogenase deficiency (MCADD) is the most common genetic disorder affecting the mitochondrial fatty acid β-oxidation pathway. The mature and functional form of human MCAD (hMCAD) is a homotetramer assembled as a dimer of dimers (monomers A/B and C/D). Each monomer binds a FA...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemistry (Easton) 2016-12, Vol.55 (51), p.7086-7098
Hauptverfasser: Bonito, Cátia A, Nunes, Joana, Leandro, João, Louro, Filipa, Leandro, Paula, Ventura, Fátima V, Guedes, Rita C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7098
container_issue 51
container_start_page 7086
container_title Biochemistry (Easton)
container_volume 55
creator Bonito, Cátia A
Nunes, Joana
Leandro, João
Louro, Filipa
Leandro, Paula
Ventura, Fátima V
Guedes, Rita C
description Medium-chain acyl-CoA dehydrogenase deficiency (MCADD) is the most common genetic disorder affecting the mitochondrial fatty acid β-oxidation pathway. The mature and functional form of human MCAD (hMCAD) is a homotetramer assembled as a dimer of dimers (monomers A/B and C/D). Each monomer binds a FAD cofactor, necessary for the enzyme’s activity. The most frequent mutation in MCADD results from the substitution of a lysine with a glutamate in position 304 of mature hMCAD (p.K329E in the precursor protein). Here, we combined in vitro and in silico approaches to assess the impact of the p.K329E mutation on the protein’s structure and function. Our in silico results demonstrated for the first time that the p.K329E mutation, despite lying at the dimer–dimer interface and being deeply buried inside the tetrameric core, seems to affect the tetramer surface, especially the β-domain that forms part of the catalytic pocket wall. Additionally, the molecular dynamics data indicate a stronger impact of the mutation on the protein’s motions in dimer A/B, while dimer C/D remains similar to the wild type. For dimer A/B, severe disruptions in the architecture of the pockets and in the FAD and octanoyl-CoA binding affinities were also observed. The presence of unaffected pockets (C/D) in the in silico studies may explain the decreased enzymatic activity determined for the variant protein (46% residual activity). Moreover, the in silico structural changes observed for the p.K329E variant protein provide an explanation for the structural instability observed experimentally, namely, the disturbed oligomeric profile, thermal stability, and conformational flexibility, with respect to the wild-type.
doi_str_mv 10.1021/acs.biochem.6b00759
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1852685432</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1852685432</sourcerecordid><originalsourceid>FETCH-LOGICAL-a345t-93bcaa568bf2fb76a03abf011a9c4562284c63ce44100ee45f9294361e5be6493</originalsourceid><addsrcrecordid>eNp9kc1u1DAUhS0EokPhCZCQl2WRqe3Yzng5GsqP6AgkaLfRjeemcZXYg50g5ZF4SxxmYMnKOtI55_rej5DXnK05E_wabFo3LtgOh7VuGKuUeUJWXAlWSGPUU7JijOlCGM0uyIuUHrOUrJLPyYWoTKU3Sq_Irzv_E13v_AMdO6RfYezCA3pn6T70aKceIt2j7cC7NCQa2j-2fUgj3YVhCJ7eQ3TgR3p1XH8uhbl5S53PkYObhmLXQRZbO_fFLmzpO-zmQ1z6IWFWrbMOvZ1pMy-hezfGQMEfFvEtf8oGuj0eY4C8Y3pJnrXQJ3x1fi_J3fub77uPxe2XD59229sCSqnGwpSNBVB607SibSoNrISmZZyDsVJpITbS6tKilJwxRKlaI4wsNUfVoJamvCRXp948-MeEaawHlyz2PXgMU6r5Rol8O1mKbC1PVhtDShHb-hjdAHGuOasXRnVmVJ8Z1WdGOfXmPGBqBjz8y_yFkg3XJ8OSfgxT9Hnf_1b-BntpoJ8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1852685432</pqid></control><display><type>article</type><title>Unveiling the Pathogenic Molecular Mechanisms of the Most Common Variant (p.K329E) in Medium-Chain Acyl-CoA Dehydrogenase Deficiency by in Vitro and in Silico Approaches</title><source>ACS Publications</source><source>MEDLINE</source><creator>Bonito, Cátia A ; Nunes, Joana ; Leandro, João ; Louro, Filipa ; Leandro, Paula ; Ventura, Fátima V ; Guedes, Rita C</creator><creatorcontrib>Bonito, Cátia A ; Nunes, Joana ; Leandro, João ; Louro, Filipa ; Leandro, Paula ; Ventura, Fátima V ; Guedes, Rita C</creatorcontrib><description>Medium-chain acyl-CoA dehydrogenase deficiency (MCADD) is the most common genetic disorder affecting the mitochondrial fatty acid β-oxidation pathway. The mature and functional form of human MCAD (hMCAD) is a homotetramer assembled as a dimer of dimers (monomers A/B and C/D). Each monomer binds a FAD cofactor, necessary for the enzyme’s activity. The most frequent mutation in MCADD results from the substitution of a lysine with a glutamate in position 304 of mature hMCAD (p.K329E in the precursor protein). Here, we combined in vitro and in silico approaches to assess the impact of the p.K329E mutation on the protein’s structure and function. Our in silico results demonstrated for the first time that the p.K329E mutation, despite lying at the dimer–dimer interface and being deeply buried inside the tetrameric core, seems to affect the tetramer surface, especially the β-domain that forms part of the catalytic pocket wall. Additionally, the molecular dynamics data indicate a stronger impact of the mutation on the protein’s motions in dimer A/B, while dimer C/D remains similar to the wild type. For dimer A/B, severe disruptions in the architecture of the pockets and in the FAD and octanoyl-CoA binding affinities were also observed. The presence of unaffected pockets (C/D) in the in silico studies may explain the decreased enzymatic activity determined for the variant protein (46% residual activity). Moreover, the in silico structural changes observed for the p.K329E variant protein provide an explanation for the structural instability observed experimentally, namely, the disturbed oligomeric profile, thermal stability, and conformational flexibility, with respect to the wild-type.</description><identifier>ISSN: 0006-2960</identifier><identifier>EISSN: 1520-4995</identifier><identifier>DOI: 10.1021/acs.biochem.6b00759</identifier><identifier>PMID: 27976856</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Acyl-CoA Dehydrogenase - chemistry ; Acyl-CoA Dehydrogenase - deficiency ; Acyl-CoA Dehydrogenase - genetics ; Biocatalysis ; Computer Simulation ; Enzyme Stability ; Glutamic Acid - genetics ; Humans ; Kinetics ; Lipid Metabolism, Inborn Errors - enzymology ; Lipid Metabolism, Inborn Errors - genetics ; Lysine - genetics ; Models, Molecular ; Motion ; Mutation, Missense ; Principal Component Analysis ; Protein Binding ; Protein Domains ; Protein Multimerization ; Temperature</subject><ispartof>Biochemistry (Easton), 2016-12, Vol.55 (51), p.7086-7098</ispartof><rights>Copyright © 2016 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a345t-93bcaa568bf2fb76a03abf011a9c4562284c63ce44100ee45f9294361e5be6493</citedby><cites>FETCH-LOGICAL-a345t-93bcaa568bf2fb76a03abf011a9c4562284c63ce44100ee45f9294361e5be6493</cites><orcidid>0000-0003-3863-3033</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.biochem.6b00759$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.biochem.6b00759$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27976856$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bonito, Cátia A</creatorcontrib><creatorcontrib>Nunes, Joana</creatorcontrib><creatorcontrib>Leandro, João</creatorcontrib><creatorcontrib>Louro, Filipa</creatorcontrib><creatorcontrib>Leandro, Paula</creatorcontrib><creatorcontrib>Ventura, Fátima V</creatorcontrib><creatorcontrib>Guedes, Rita C</creatorcontrib><title>Unveiling the Pathogenic Molecular Mechanisms of the Most Common Variant (p.K329E) in Medium-Chain Acyl-CoA Dehydrogenase Deficiency by in Vitro and in Silico Approaches</title><title>Biochemistry (Easton)</title><addtitle>Biochemistry</addtitle><description>Medium-chain acyl-CoA dehydrogenase deficiency (MCADD) is the most common genetic disorder affecting the mitochondrial fatty acid β-oxidation pathway. The mature and functional form of human MCAD (hMCAD) is a homotetramer assembled as a dimer of dimers (monomers A/B and C/D). Each monomer binds a FAD cofactor, necessary for the enzyme’s activity. The most frequent mutation in MCADD results from the substitution of a lysine with a glutamate in position 304 of mature hMCAD (p.K329E in the precursor protein). Here, we combined in vitro and in silico approaches to assess the impact of the p.K329E mutation on the protein’s structure and function. Our in silico results demonstrated for the first time that the p.K329E mutation, despite lying at the dimer–dimer interface and being deeply buried inside the tetrameric core, seems to affect the tetramer surface, especially the β-domain that forms part of the catalytic pocket wall. Additionally, the molecular dynamics data indicate a stronger impact of the mutation on the protein’s motions in dimer A/B, while dimer C/D remains similar to the wild type. For dimer A/B, severe disruptions in the architecture of the pockets and in the FAD and octanoyl-CoA binding affinities were also observed. The presence of unaffected pockets (C/D) in the in silico studies may explain the decreased enzymatic activity determined for the variant protein (46% residual activity). Moreover, the in silico structural changes observed for the p.K329E variant protein provide an explanation for the structural instability observed experimentally, namely, the disturbed oligomeric profile, thermal stability, and conformational flexibility, with respect to the wild-type.</description><subject>Acyl-CoA Dehydrogenase - chemistry</subject><subject>Acyl-CoA Dehydrogenase - deficiency</subject><subject>Acyl-CoA Dehydrogenase - genetics</subject><subject>Biocatalysis</subject><subject>Computer Simulation</subject><subject>Enzyme Stability</subject><subject>Glutamic Acid - genetics</subject><subject>Humans</subject><subject>Kinetics</subject><subject>Lipid Metabolism, Inborn Errors - enzymology</subject><subject>Lipid Metabolism, Inborn Errors - genetics</subject><subject>Lysine - genetics</subject><subject>Models, Molecular</subject><subject>Motion</subject><subject>Mutation, Missense</subject><subject>Principal Component Analysis</subject><subject>Protein Binding</subject><subject>Protein Domains</subject><subject>Protein Multimerization</subject><subject>Temperature</subject><issn>0006-2960</issn><issn>1520-4995</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc1u1DAUhS0EokPhCZCQl2WRqe3Yzng5GsqP6AgkaLfRjeemcZXYg50g5ZF4SxxmYMnKOtI55_rej5DXnK05E_wabFo3LtgOh7VuGKuUeUJWXAlWSGPUU7JijOlCGM0uyIuUHrOUrJLPyYWoTKU3Sq_Irzv_E13v_AMdO6RfYezCA3pn6T70aKceIt2j7cC7NCQa2j-2fUgj3YVhCJ7eQ3TgR3p1XH8uhbl5S53PkYObhmLXQRZbO_fFLmzpO-zmQ1z6IWFWrbMOvZ1pMy-hezfGQMEfFvEtf8oGuj0eY4C8Y3pJnrXQJ3x1fi_J3fub77uPxe2XD59229sCSqnGwpSNBVB607SibSoNrISmZZyDsVJpITbS6tKilJwxRKlaI4wsNUfVoJamvCRXp948-MeEaawHlyz2PXgMU6r5Rol8O1mKbC1PVhtDShHb-hjdAHGuOasXRnVmVJ8Z1WdGOfXmPGBqBjz8y_yFkg3XJ8OSfgxT9Hnf_1b-BntpoJ8</recordid><startdate>20161227</startdate><enddate>20161227</enddate><creator>Bonito, Cátia A</creator><creator>Nunes, Joana</creator><creator>Leandro, João</creator><creator>Louro, Filipa</creator><creator>Leandro, Paula</creator><creator>Ventura, Fátima V</creator><creator>Guedes, Rita C</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3863-3033</orcidid></search><sort><creationdate>20161227</creationdate><title>Unveiling the Pathogenic Molecular Mechanisms of the Most Common Variant (p.K329E) in Medium-Chain Acyl-CoA Dehydrogenase Deficiency by in Vitro and in Silico Approaches</title><author>Bonito, Cátia A ; Nunes, Joana ; Leandro, João ; Louro, Filipa ; Leandro, Paula ; Ventura, Fátima V ; Guedes, Rita C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a345t-93bcaa568bf2fb76a03abf011a9c4562284c63ce44100ee45f9294361e5be6493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Acyl-CoA Dehydrogenase - chemistry</topic><topic>Acyl-CoA Dehydrogenase - deficiency</topic><topic>Acyl-CoA Dehydrogenase - genetics</topic><topic>Biocatalysis</topic><topic>Computer Simulation</topic><topic>Enzyme Stability</topic><topic>Glutamic Acid - genetics</topic><topic>Humans</topic><topic>Kinetics</topic><topic>Lipid Metabolism, Inborn Errors - enzymology</topic><topic>Lipid Metabolism, Inborn Errors - genetics</topic><topic>Lysine - genetics</topic><topic>Models, Molecular</topic><topic>Motion</topic><topic>Mutation, Missense</topic><topic>Principal Component Analysis</topic><topic>Protein Binding</topic><topic>Protein Domains</topic><topic>Protein Multimerization</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bonito, Cátia A</creatorcontrib><creatorcontrib>Nunes, Joana</creatorcontrib><creatorcontrib>Leandro, João</creatorcontrib><creatorcontrib>Louro, Filipa</creatorcontrib><creatorcontrib>Leandro, Paula</creatorcontrib><creatorcontrib>Ventura, Fátima V</creatorcontrib><creatorcontrib>Guedes, Rita C</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Biochemistry (Easton)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bonito, Cátia A</au><au>Nunes, Joana</au><au>Leandro, João</au><au>Louro, Filipa</au><au>Leandro, Paula</au><au>Ventura, Fátima V</au><au>Guedes, Rita C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unveiling the Pathogenic Molecular Mechanisms of the Most Common Variant (p.K329E) in Medium-Chain Acyl-CoA Dehydrogenase Deficiency by in Vitro and in Silico Approaches</atitle><jtitle>Biochemistry (Easton)</jtitle><addtitle>Biochemistry</addtitle><date>2016-12-27</date><risdate>2016</risdate><volume>55</volume><issue>51</issue><spage>7086</spage><epage>7098</epage><pages>7086-7098</pages><issn>0006-2960</issn><eissn>1520-4995</eissn><abstract>Medium-chain acyl-CoA dehydrogenase deficiency (MCADD) is the most common genetic disorder affecting the mitochondrial fatty acid β-oxidation pathway. The mature and functional form of human MCAD (hMCAD) is a homotetramer assembled as a dimer of dimers (monomers A/B and C/D). Each monomer binds a FAD cofactor, necessary for the enzyme’s activity. The most frequent mutation in MCADD results from the substitution of a lysine with a glutamate in position 304 of mature hMCAD (p.K329E in the precursor protein). Here, we combined in vitro and in silico approaches to assess the impact of the p.K329E mutation on the protein’s structure and function. Our in silico results demonstrated for the first time that the p.K329E mutation, despite lying at the dimer–dimer interface and being deeply buried inside the tetrameric core, seems to affect the tetramer surface, especially the β-domain that forms part of the catalytic pocket wall. Additionally, the molecular dynamics data indicate a stronger impact of the mutation on the protein’s motions in dimer A/B, while dimer C/D remains similar to the wild type. For dimer A/B, severe disruptions in the architecture of the pockets and in the FAD and octanoyl-CoA binding affinities were also observed. The presence of unaffected pockets (C/D) in the in silico studies may explain the decreased enzymatic activity determined for the variant protein (46% residual activity). Moreover, the in silico structural changes observed for the p.K329E variant protein provide an explanation for the structural instability observed experimentally, namely, the disturbed oligomeric profile, thermal stability, and conformational flexibility, with respect to the wild-type.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>27976856</pmid><doi>10.1021/acs.biochem.6b00759</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-3863-3033</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0006-2960
ispartof Biochemistry (Easton), 2016-12, Vol.55 (51), p.7086-7098
issn 0006-2960
1520-4995
language eng
recordid cdi_proquest_miscellaneous_1852685432
source ACS Publications; MEDLINE
subjects Acyl-CoA Dehydrogenase - chemistry
Acyl-CoA Dehydrogenase - deficiency
Acyl-CoA Dehydrogenase - genetics
Biocatalysis
Computer Simulation
Enzyme Stability
Glutamic Acid - genetics
Humans
Kinetics
Lipid Metabolism, Inborn Errors - enzymology
Lipid Metabolism, Inborn Errors - genetics
Lysine - genetics
Models, Molecular
Motion
Mutation, Missense
Principal Component Analysis
Protein Binding
Protein Domains
Protein Multimerization
Temperature
title Unveiling the Pathogenic Molecular Mechanisms of the Most Common Variant (p.K329E) in Medium-Chain Acyl-CoA Dehydrogenase Deficiency by in Vitro and in Silico Approaches
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T16%3A25%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unveiling%20the%20Pathogenic%20Molecular%20Mechanisms%20of%20the%20Most%20Common%20Variant%20(p.K329E)%20in%20Medium-Chain%20Acyl-CoA%20Dehydrogenase%20Deficiency%20by%20in%20Vitro%20and%20in%20Silico%20Approaches&rft.jtitle=Biochemistry%20(Easton)&rft.au=Bonito,%20Ca%CC%81tia%20A&rft.date=2016-12-27&rft.volume=55&rft.issue=51&rft.spage=7086&rft.epage=7098&rft.pages=7086-7098&rft.issn=0006-2960&rft.eissn=1520-4995&rft_id=info:doi/10.1021/acs.biochem.6b00759&rft_dat=%3Cproquest_cross%3E1852685432%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1852685432&rft_id=info:pmid/27976856&rfr_iscdi=true