MIB: Metal Ion-Binding Site Prediction and Docking Server

The structure of a protein determines its biological function(s) and its interactions with other factors; the binding regions tend to be conserved in sequence and structure, and the interacting residues involved are usually in close 3D space. The Protein Data Bank currently contains more than 110 00...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of chemical information and modeling 2016-12, Vol.56 (12), p.2287-2291
Hauptverfasser: Lin, Yu-Feng, Cheng, Chih-Wen, Shih, Chung-Shiuan, Hwang, Jenn-Kang, Yu, Chin-Sheng, Lu, Chih-Hao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2291
container_issue 12
container_start_page 2287
container_title Journal of chemical information and modeling
container_volume 56
creator Lin, Yu-Feng
Cheng, Chih-Wen
Shih, Chung-Shiuan
Hwang, Jenn-Kang
Yu, Chin-Sheng
Lu, Chih-Hao
description The structure of a protein determines its biological function(s) and its interactions with other factors; the binding regions tend to be conserved in sequence and structure, and the interacting residues involved are usually in close 3D space. The Protein Data Bank currently contains more than 110 000 protein structures, approximately one-third of which contain metal ions. Identifying and characterizing metal ion-binding sites is thus essential for investigating a protein’s function(s) and interactions. However, experimental approaches are time-consuming and costly. The web server reported here was built to predict metal ion-binding residues and to generate the predicted metal ion-bound 3D structure. Binding templates have been constructed for regions that bind 12 types of metal ion-binding residues have been used to construct binding templates. The templates include residues within 3.5 Å of the metal ion, and the fragment transformation method was used for structural comparison between query proteins and templates without any data training. Through the adjustment of scoring functions, which are based on the similarity of structure and binding residues. Twelve kinds of metal ions (Ca2+, Cu2+, Fe3+, Mg2+, Mn2+, Zn2+, Cd2+, Fe2+, Ni2+, Hg2+, Co2+, and Cu+) binding residues prediction are supported. MIB also provides the metal ions docking after prediction. The MIB server is available at http://bioinfo.cmu.edu.tw/MIB/.
doi_str_mv 10.1021/acs.jcim.6b00407
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1852684068</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4290037411</sourcerecordid><originalsourceid>FETCH-LOGICAL-a3217-c72a4448da01502968f7fdfb7f23f0139f17553c9f292a0c5d13fa47c7aa1f7a3</originalsourceid><addsrcrecordid>eNp1kEtLAzEURoMotlb3rmTAjQun5jXJxJ2tr0KLggruQppJJHUeNZkR_PfO9LUQXOVCzvfdywHgFMEhghhdKR2GC-2KIZtDSCHfA32UUBELBt_3t3MiWA8chbCAkBDB8CHoYS44S1PWB2I2GV1HM1OrPJpUZTxyZebKj-jF1SZ69iZzunZVGakyi24r_bn6M_7b-GNwYFUezMnmHYC3-7vX8WM8fXqYjG-msSIY8VhzrCilaaYgSiAWLLXcZnbOLSYWIiIs4klCtLBYYAV1kiFiFeWaK4UsV2QALta9S199NSbUsnBBmzxXpamaIFGaYJZSyNIWPf-DLqrGl-11HUUxZozSloJrSvsqBG-sXHpXKP8jEZSdVtlqlZ1WudHaRs42xc28MNkusPXYApdrYBXdLf2v7xczZoCQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1854226644</pqid></control><display><type>article</type><title>MIB: Metal Ion-Binding Site Prediction and Docking Server</title><source>MEDLINE</source><source>ACS Publications</source><creator>Lin, Yu-Feng ; Cheng, Chih-Wen ; Shih, Chung-Shiuan ; Hwang, Jenn-Kang ; Yu, Chin-Sheng ; Lu, Chih-Hao</creator><creatorcontrib>Lin, Yu-Feng ; Cheng, Chih-Wen ; Shih, Chung-Shiuan ; Hwang, Jenn-Kang ; Yu, Chin-Sheng ; Lu, Chih-Hao</creatorcontrib><description>The structure of a protein determines its biological function(s) and its interactions with other factors; the binding regions tend to be conserved in sequence and structure, and the interacting residues involved are usually in close 3D space. The Protein Data Bank currently contains more than 110 000 protein structures, approximately one-third of which contain metal ions. Identifying and characterizing metal ion-binding sites is thus essential for investigating a protein’s function(s) and interactions. However, experimental approaches are time-consuming and costly. The web server reported here was built to predict metal ion-binding residues and to generate the predicted metal ion-bound 3D structure. Binding templates have been constructed for regions that bind 12 types of metal ion-binding residues have been used to construct binding templates. The templates include residues within 3.5 Å of the metal ion, and the fragment transformation method was used for structural comparison between query proteins and templates without any data training. Through the adjustment of scoring functions, which are based on the similarity of structure and binding residues. Twelve kinds of metal ions (Ca2+, Cu2+, Fe3+, Mg2+, Mn2+, Zn2+, Cd2+, Fe2+, Ni2+, Hg2+, Co2+, and Cu+) binding residues prediction are supported. MIB also provides the metal ions docking after prediction. The MIB server is available at http://bioinfo.cmu.edu.tw/MIB/.</description><identifier>ISSN: 1549-9596</identifier><identifier>EISSN: 1549-960X</identifier><identifier>DOI: 10.1021/acs.jcim.6b00407</identifier><identifier>PMID: 27976886</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Binding Sites ; Cations - metabolism ; Databases, Protein ; Internet ; Ions ; Metals ; Metals - metabolism ; Molecular Docking Simulation ; Protein Conformation ; Proteins ; Proteins - chemistry ; Proteins - metabolism ; Software</subject><ispartof>Journal of chemical information and modeling, 2016-12, Vol.56 (12), p.2287-2291</ispartof><rights>Copyright © 2016 American Chemical Society</rights><rights>Copyright American Chemical Society Dec 27, 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a3217-c72a4448da01502968f7fdfb7f23f0139f17553c9f292a0c5d13fa47c7aa1f7a3</citedby><cites>FETCH-LOGICAL-a3217-c72a4448da01502968f7fdfb7f23f0139f17553c9f292a0c5d13fa47c7aa1f7a3</cites><orcidid>0000-0002-8363-6244</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jcim.6b00407$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jcim.6b00407$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27976886$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lin, Yu-Feng</creatorcontrib><creatorcontrib>Cheng, Chih-Wen</creatorcontrib><creatorcontrib>Shih, Chung-Shiuan</creatorcontrib><creatorcontrib>Hwang, Jenn-Kang</creatorcontrib><creatorcontrib>Yu, Chin-Sheng</creatorcontrib><creatorcontrib>Lu, Chih-Hao</creatorcontrib><title>MIB: Metal Ion-Binding Site Prediction and Docking Server</title><title>Journal of chemical information and modeling</title><addtitle>J. Chem. Inf. Model</addtitle><description>The structure of a protein determines its biological function(s) and its interactions with other factors; the binding regions tend to be conserved in sequence and structure, and the interacting residues involved are usually in close 3D space. The Protein Data Bank currently contains more than 110 000 protein structures, approximately one-third of which contain metal ions. Identifying and characterizing metal ion-binding sites is thus essential for investigating a protein’s function(s) and interactions. However, experimental approaches are time-consuming and costly. The web server reported here was built to predict metal ion-binding residues and to generate the predicted metal ion-bound 3D structure. Binding templates have been constructed for regions that bind 12 types of metal ion-binding residues have been used to construct binding templates. The templates include residues within 3.5 Å of the metal ion, and the fragment transformation method was used for structural comparison between query proteins and templates without any data training. Through the adjustment of scoring functions, which are based on the similarity of structure and binding residues. Twelve kinds of metal ions (Ca2+, Cu2+, Fe3+, Mg2+, Mn2+, Zn2+, Cd2+, Fe2+, Ni2+, Hg2+, Co2+, and Cu+) binding residues prediction are supported. MIB also provides the metal ions docking after prediction. The MIB server is available at http://bioinfo.cmu.edu.tw/MIB/.</description><subject>Binding Sites</subject><subject>Cations - metabolism</subject><subject>Databases, Protein</subject><subject>Internet</subject><subject>Ions</subject><subject>Metals</subject><subject>Metals - metabolism</subject><subject>Molecular Docking Simulation</subject><subject>Protein Conformation</subject><subject>Proteins</subject><subject>Proteins - chemistry</subject><subject>Proteins - metabolism</subject><subject>Software</subject><issn>1549-9596</issn><issn>1549-960X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kEtLAzEURoMotlb3rmTAjQun5jXJxJ2tr0KLggruQppJJHUeNZkR_PfO9LUQXOVCzvfdywHgFMEhghhdKR2GC-2KIZtDSCHfA32UUBELBt_3t3MiWA8chbCAkBDB8CHoYS44S1PWB2I2GV1HM1OrPJpUZTxyZebKj-jF1SZ69iZzunZVGakyi24r_bn6M_7b-GNwYFUezMnmHYC3-7vX8WM8fXqYjG-msSIY8VhzrCilaaYgSiAWLLXcZnbOLSYWIiIs4klCtLBYYAV1kiFiFeWaK4UsV2QALta9S199NSbUsnBBmzxXpamaIFGaYJZSyNIWPf-DLqrGl-11HUUxZozSloJrSvsqBG-sXHpXKP8jEZSdVtlqlZ1WudHaRs42xc28MNkusPXYApdrYBXdLf2v7xczZoCQ</recordid><startdate>20161227</startdate><enddate>20161227</enddate><creator>Lin, Yu-Feng</creator><creator>Cheng, Chih-Wen</creator><creator>Shih, Chung-Shiuan</creator><creator>Hwang, Jenn-Kang</creator><creator>Yu, Chin-Sheng</creator><creator>Lu, Chih-Hao</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8363-6244</orcidid></search><sort><creationdate>20161227</creationdate><title>MIB: Metal Ion-Binding Site Prediction and Docking Server</title><author>Lin, Yu-Feng ; Cheng, Chih-Wen ; Shih, Chung-Shiuan ; Hwang, Jenn-Kang ; Yu, Chin-Sheng ; Lu, Chih-Hao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a3217-c72a4448da01502968f7fdfb7f23f0139f17553c9f292a0c5d13fa47c7aa1f7a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Binding Sites</topic><topic>Cations - metabolism</topic><topic>Databases, Protein</topic><topic>Internet</topic><topic>Ions</topic><topic>Metals</topic><topic>Metals - metabolism</topic><topic>Molecular Docking Simulation</topic><topic>Protein Conformation</topic><topic>Proteins</topic><topic>Proteins - chemistry</topic><topic>Proteins - metabolism</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Yu-Feng</creatorcontrib><creatorcontrib>Cheng, Chih-Wen</creatorcontrib><creatorcontrib>Shih, Chung-Shiuan</creatorcontrib><creatorcontrib>Hwang, Jenn-Kang</creatorcontrib><creatorcontrib>Yu, Chin-Sheng</creatorcontrib><creatorcontrib>Lu, Chih-Hao</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of chemical information and modeling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Yu-Feng</au><au>Cheng, Chih-Wen</au><au>Shih, Chung-Shiuan</au><au>Hwang, Jenn-Kang</au><au>Yu, Chin-Sheng</au><au>Lu, Chih-Hao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MIB: Metal Ion-Binding Site Prediction and Docking Server</atitle><jtitle>Journal of chemical information and modeling</jtitle><addtitle>J. Chem. Inf. Model</addtitle><date>2016-12-27</date><risdate>2016</risdate><volume>56</volume><issue>12</issue><spage>2287</spage><epage>2291</epage><pages>2287-2291</pages><issn>1549-9596</issn><eissn>1549-960X</eissn><abstract>The structure of a protein determines its biological function(s) and its interactions with other factors; the binding regions tend to be conserved in sequence and structure, and the interacting residues involved are usually in close 3D space. The Protein Data Bank currently contains more than 110 000 protein structures, approximately one-third of which contain metal ions. Identifying and characterizing metal ion-binding sites is thus essential for investigating a protein’s function(s) and interactions. However, experimental approaches are time-consuming and costly. The web server reported here was built to predict metal ion-binding residues and to generate the predicted metal ion-bound 3D structure. Binding templates have been constructed for regions that bind 12 types of metal ion-binding residues have been used to construct binding templates. The templates include residues within 3.5 Å of the metal ion, and the fragment transformation method was used for structural comparison between query proteins and templates without any data training. Through the adjustment of scoring functions, which are based on the similarity of structure and binding residues. Twelve kinds of metal ions (Ca2+, Cu2+, Fe3+, Mg2+, Mn2+, Zn2+, Cd2+, Fe2+, Ni2+, Hg2+, Co2+, and Cu+) binding residues prediction are supported. MIB also provides the metal ions docking after prediction. The MIB server is available at http://bioinfo.cmu.edu.tw/MIB/.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>27976886</pmid><doi>10.1021/acs.jcim.6b00407</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-8363-6244</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1549-9596
ispartof Journal of chemical information and modeling, 2016-12, Vol.56 (12), p.2287-2291
issn 1549-9596
1549-960X
language eng
recordid cdi_proquest_miscellaneous_1852684068
source MEDLINE; ACS Publications
subjects Binding Sites
Cations - metabolism
Databases, Protein
Internet
Ions
Metals
Metals - metabolism
Molecular Docking Simulation
Protein Conformation
Proteins
Proteins - chemistry
Proteins - metabolism
Software
title MIB: Metal Ion-Binding Site Prediction and Docking Server
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T09%3A20%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MIB:%20Metal%20Ion-Binding%20Site%20Prediction%20and%20Docking%20Server&rft.jtitle=Journal%20of%20chemical%20information%20and%20modeling&rft.au=Lin,%20Yu-Feng&rft.date=2016-12-27&rft.volume=56&rft.issue=12&rft.spage=2287&rft.epage=2291&rft.pages=2287-2291&rft.issn=1549-9596&rft.eissn=1549-960X&rft_id=info:doi/10.1021/acs.jcim.6b00407&rft_dat=%3Cproquest_cross%3E4290037411%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1854226644&rft_id=info:pmid/27976886&rfr_iscdi=true