Dual HDAC and PI3K Inhibitor CUDC-907 Downregulates MYC and Suppresses Growth of MYC-dependent Cancers

Upregulation of MYC is a common driver event in human cancers, and some tumors depend on MYC to maintain transcriptional programs that promote cell growth and proliferation. Preclinical studies have suggested that individually targeting upstream regulators of MYC, such as histone deacetylases (HDAC)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular cancer therapeutics 2017-02, Vol.16 (2), p.285-299
Hauptverfasser: Sun, Kaiming, Atoyan, Ruzanna, Borek, Mylissa A, Dellarocca, Steven, Samson, Maria Elena S, Ma, Anna W, Xu, Guang-Xin, Patterson, Troy, Tuck, David P, Viner, Jaye L, Fattaey, Ali, Wang, Jing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 299
container_issue 2
container_start_page 285
container_title Molecular cancer therapeutics
container_volume 16
creator Sun, Kaiming
Atoyan, Ruzanna
Borek, Mylissa A
Dellarocca, Steven
Samson, Maria Elena S
Ma, Anna W
Xu, Guang-Xin
Patterson, Troy
Tuck, David P
Viner, Jaye L
Fattaey, Ali
Wang, Jing
description Upregulation of MYC is a common driver event in human cancers, and some tumors depend on MYC to maintain transcriptional programs that promote cell growth and proliferation. Preclinical studies have suggested that individually targeting upstream regulators of MYC, such as histone deacetylases (HDAC) and phosphoinositide 3-kinases (PI3K), can reduce MYC protein levels and suppress the growth of MYC-driven cancers. Synergy between HDAC and PI3K inhibition in inducing cancer cell death has also been reported, but the involvement of MYC regulation is unclear. In this study, we demonstrated that HDAC and PI3K inhibition synergistically downregulates MYC protein levels and induces apoptosis in "double-hit" (DH) diffuse large B-cell lymphoma (DLBCL) cells. Furthermore, CUDC-907, a small-molecule dual-acting inhibitor of both class I and II HDACs and class I PI3Ks, effectively suppresses the growth and survival of MYC-altered or MYC-dependent cancer cells, such as DH DLBCL and BRD-NUT fusion-positive NUT midline carcinoma (NMC) cells, and MYC protein downregulation is an early event induced by CUDC-907 treatment. Consistently, the antitumor activity of CUDC-907 against multiple MYC-driven cancer types was also demonstrated in animal models, including DLBCL and NMC xenograft models, Myc transgenic tumor syngeneic models, and MYC-amplified solid tumor patient-derived xenograft (PDX) models. Our findings suggest that dual function HDAC and PI3K inhibitor CUDC-907 is an effective agent targeting MYC and thus may be developed as potential therapy for MYC-dependent cancers. Mol Cancer Ther; 16(2); 285-99. ©2016 AACR.
doi_str_mv 10.1158/1535-7163.MCT-16-0390
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1852682633</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1852682633</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-3f28fced30900c84c409d269dd1544e978bd9ad004eb34ab6e76df643df7f3cb3</originalsourceid><addsrcrecordid>eNpdkUFLxDAQhYMorq7-BCXgxUs0ado0OUqr7qKLguvBU0ibie7SbWvSIv57W1c9eJph5nvD8B5CJ4xeMJbIS5bwhKRM8ItFtiRMEMoV3UEHw1wSmbB497vfMhN0GMKaUiZVxPbRJEqVpIzKA-Ty3lR4ll9l2NQWP875HZ7Xb6ti1TUeZ895RhRNcd581B5e-8p0EPDiZUs_9W3rIYRhdOubj-4NN25cEgst1BbqDmemLsGHI7TnTBXg-KdO0fPN9TKbkfuH23l2dU9KLmlHuIukK8FyqigtZVzGVNlIKGtZEsegUllYZSylMRQ8NoWAVFgnYm5d6nhZ8Ck6395tffPeQ-j0ZhVKqCpTQ9MHzWQSCRkJzgf07B-6bnpfD99ppiQfQK5GKtlSpW9C8OB061cb4z81o3oMQo8m69FkPQShmdBjEIPu9Od6X2zA_ql-nedf0RSBSA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1983852393</pqid></control><display><type>article</type><title>Dual HDAC and PI3K Inhibitor CUDC-907 Downregulates MYC and Suppresses Growth of MYC-dependent Cancers</title><source>MEDLINE</source><source>American Association for Cancer Research</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Sun, Kaiming ; Atoyan, Ruzanna ; Borek, Mylissa A ; Dellarocca, Steven ; Samson, Maria Elena S ; Ma, Anna W ; Xu, Guang-Xin ; Patterson, Troy ; Tuck, David P ; Viner, Jaye L ; Fattaey, Ali ; Wang, Jing</creator><creatorcontrib>Sun, Kaiming ; Atoyan, Ruzanna ; Borek, Mylissa A ; Dellarocca, Steven ; Samson, Maria Elena S ; Ma, Anna W ; Xu, Guang-Xin ; Patterson, Troy ; Tuck, David P ; Viner, Jaye L ; Fattaey, Ali ; Wang, Jing</creatorcontrib><description>Upregulation of MYC is a common driver event in human cancers, and some tumors depend on MYC to maintain transcriptional programs that promote cell growth and proliferation. Preclinical studies have suggested that individually targeting upstream regulators of MYC, such as histone deacetylases (HDAC) and phosphoinositide 3-kinases (PI3K), can reduce MYC protein levels and suppress the growth of MYC-driven cancers. Synergy between HDAC and PI3K inhibition in inducing cancer cell death has also been reported, but the involvement of MYC regulation is unclear. In this study, we demonstrated that HDAC and PI3K inhibition synergistically downregulates MYC protein levels and induces apoptosis in "double-hit" (DH) diffuse large B-cell lymphoma (DLBCL) cells. Furthermore, CUDC-907, a small-molecule dual-acting inhibitor of both class I and II HDACs and class I PI3Ks, effectively suppresses the growth and survival of MYC-altered or MYC-dependent cancer cells, such as DH DLBCL and BRD-NUT fusion-positive NUT midline carcinoma (NMC) cells, and MYC protein downregulation is an early event induced by CUDC-907 treatment. Consistently, the antitumor activity of CUDC-907 against multiple MYC-driven cancer types was also demonstrated in animal models, including DLBCL and NMC xenograft models, Myc transgenic tumor syngeneic models, and MYC-amplified solid tumor patient-derived xenograft (PDX) models. Our findings suggest that dual function HDAC and PI3K inhibitor CUDC-907 is an effective agent targeting MYC and thus may be developed as potential therapy for MYC-dependent cancers. Mol Cancer Ther; 16(2); 285-99. ©2016 AACR.</description><identifier>ISSN: 1535-7163</identifier><identifier>EISSN: 1538-8514</identifier><identifier>DOI: 10.1158/1535-7163.MCT-16-0390</identifier><identifier>PMID: 27980108</identifier><language>eng</language><publisher>United States: American Association for Cancer Research Inc</publisher><subject>1-Phosphatidylinositol 3-kinase ; Animal models ; Animals ; Anticancer properties ; Antineoplastic Agents - pharmacology ; Antitumor activity ; Apoptosis ; Apoptosis - drug effects ; Apoptosis - genetics ; B-cell lymphoma ; Cancer ; Cell death ; Cell Line, Tumor ; Cell Proliferation - drug effects ; Disease Models, Animal ; Dose-Response Relationship, Drug ; Female ; Gene Expression Regulation, Neoplastic - drug effects ; Genes, myc ; Histone deacetylase ; Histone Deacetylase Inhibitors - pharmacology ; Humans ; Inhibition ; Inhibitors ; Kinases ; Lymphocytes B ; Lymphoma ; Lymphoma, B-Cell - drug therapy ; Lymphoma, B-Cell - genetics ; Lymphoma, B-Cell - metabolism ; Lymphoma, B-Cell - pathology ; Mice ; Mice, Transgenic ; Myc protein ; Neoplasms - drug therapy ; Neoplasms - genetics ; Neoplasms - metabolism ; Neoplasms - pathology ; Phosphatidylinositol 3-Kinases - antagonists &amp; inhibitors ; Proteins ; Proteolysis ; Regulators ; Solid tumors ; Transcription ; Tumor Burden - drug effects ; Tumors ; Xenograft Model Antitumor Assays ; Xenografts</subject><ispartof>Molecular cancer therapeutics, 2017-02, Vol.16 (2), p.285-299</ispartof><rights>2016 American Association for Cancer Research.</rights><rights>Copyright American Association for Cancer Research Inc Feb 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-3f28fced30900c84c409d269dd1544e978bd9ad004eb34ab6e76df643df7f3cb3</citedby><cites>FETCH-LOGICAL-c380t-3f28fced30900c84c409d269dd1544e978bd9ad004eb34ab6e76df643df7f3cb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3343,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27980108$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sun, Kaiming</creatorcontrib><creatorcontrib>Atoyan, Ruzanna</creatorcontrib><creatorcontrib>Borek, Mylissa A</creatorcontrib><creatorcontrib>Dellarocca, Steven</creatorcontrib><creatorcontrib>Samson, Maria Elena S</creatorcontrib><creatorcontrib>Ma, Anna W</creatorcontrib><creatorcontrib>Xu, Guang-Xin</creatorcontrib><creatorcontrib>Patterson, Troy</creatorcontrib><creatorcontrib>Tuck, David P</creatorcontrib><creatorcontrib>Viner, Jaye L</creatorcontrib><creatorcontrib>Fattaey, Ali</creatorcontrib><creatorcontrib>Wang, Jing</creatorcontrib><title>Dual HDAC and PI3K Inhibitor CUDC-907 Downregulates MYC and Suppresses Growth of MYC-dependent Cancers</title><title>Molecular cancer therapeutics</title><addtitle>Mol Cancer Ther</addtitle><description>Upregulation of MYC is a common driver event in human cancers, and some tumors depend on MYC to maintain transcriptional programs that promote cell growth and proliferation. Preclinical studies have suggested that individually targeting upstream regulators of MYC, such as histone deacetylases (HDAC) and phosphoinositide 3-kinases (PI3K), can reduce MYC protein levels and suppress the growth of MYC-driven cancers. Synergy between HDAC and PI3K inhibition in inducing cancer cell death has also been reported, but the involvement of MYC regulation is unclear. In this study, we demonstrated that HDAC and PI3K inhibition synergistically downregulates MYC protein levels and induces apoptosis in "double-hit" (DH) diffuse large B-cell lymphoma (DLBCL) cells. Furthermore, CUDC-907, a small-molecule dual-acting inhibitor of both class I and II HDACs and class I PI3Ks, effectively suppresses the growth and survival of MYC-altered or MYC-dependent cancer cells, such as DH DLBCL and BRD-NUT fusion-positive NUT midline carcinoma (NMC) cells, and MYC protein downregulation is an early event induced by CUDC-907 treatment. Consistently, the antitumor activity of CUDC-907 against multiple MYC-driven cancer types was also demonstrated in animal models, including DLBCL and NMC xenograft models, Myc transgenic tumor syngeneic models, and MYC-amplified solid tumor patient-derived xenograft (PDX) models. Our findings suggest that dual function HDAC and PI3K inhibitor CUDC-907 is an effective agent targeting MYC and thus may be developed as potential therapy for MYC-dependent cancers. Mol Cancer Ther; 16(2); 285-99. ©2016 AACR.</description><subject>1-Phosphatidylinositol 3-kinase</subject><subject>Animal models</subject><subject>Animals</subject><subject>Anticancer properties</subject><subject>Antineoplastic Agents - pharmacology</subject><subject>Antitumor activity</subject><subject>Apoptosis</subject><subject>Apoptosis - drug effects</subject><subject>Apoptosis - genetics</subject><subject>B-cell lymphoma</subject><subject>Cancer</subject><subject>Cell death</subject><subject>Cell Line, Tumor</subject><subject>Cell Proliferation - drug effects</subject><subject>Disease Models, Animal</subject><subject>Dose-Response Relationship, Drug</subject><subject>Female</subject><subject>Gene Expression Regulation, Neoplastic - drug effects</subject><subject>Genes, myc</subject><subject>Histone deacetylase</subject><subject>Histone Deacetylase Inhibitors - pharmacology</subject><subject>Humans</subject><subject>Inhibition</subject><subject>Inhibitors</subject><subject>Kinases</subject><subject>Lymphocytes B</subject><subject>Lymphoma</subject><subject>Lymphoma, B-Cell - drug therapy</subject><subject>Lymphoma, B-Cell - genetics</subject><subject>Lymphoma, B-Cell - metabolism</subject><subject>Lymphoma, B-Cell - pathology</subject><subject>Mice</subject><subject>Mice, Transgenic</subject><subject>Myc protein</subject><subject>Neoplasms - drug therapy</subject><subject>Neoplasms - genetics</subject><subject>Neoplasms - metabolism</subject><subject>Neoplasms - pathology</subject><subject>Phosphatidylinositol 3-Kinases - antagonists &amp; inhibitors</subject><subject>Proteins</subject><subject>Proteolysis</subject><subject>Regulators</subject><subject>Solid tumors</subject><subject>Transcription</subject><subject>Tumor Burden - drug effects</subject><subject>Tumors</subject><subject>Xenograft Model Antitumor Assays</subject><subject>Xenografts</subject><issn>1535-7163</issn><issn>1538-8514</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkUFLxDAQhYMorq7-BCXgxUs0ado0OUqr7qKLguvBU0ibie7SbWvSIv57W1c9eJph5nvD8B5CJ4xeMJbIS5bwhKRM8ItFtiRMEMoV3UEHw1wSmbB497vfMhN0GMKaUiZVxPbRJEqVpIzKA-Ty3lR4ll9l2NQWP875HZ7Xb6ti1TUeZ895RhRNcd581B5e-8p0EPDiZUs_9W3rIYRhdOubj-4NN25cEgst1BbqDmemLsGHI7TnTBXg-KdO0fPN9TKbkfuH23l2dU9KLmlHuIukK8FyqigtZVzGVNlIKGtZEsegUllYZSylMRQ8NoWAVFgnYm5d6nhZ8Ck6395tffPeQ-j0ZhVKqCpTQ9MHzWQSCRkJzgf07B-6bnpfD99ppiQfQK5GKtlSpW9C8OB061cb4z81o3oMQo8m69FkPQShmdBjEIPu9Od6X2zA_ql-nedf0RSBSA</recordid><startdate>201702</startdate><enddate>201702</enddate><creator>Sun, Kaiming</creator><creator>Atoyan, Ruzanna</creator><creator>Borek, Mylissa A</creator><creator>Dellarocca, Steven</creator><creator>Samson, Maria Elena S</creator><creator>Ma, Anna W</creator><creator>Xu, Guang-Xin</creator><creator>Patterson, Troy</creator><creator>Tuck, David P</creator><creator>Viner, Jaye L</creator><creator>Fattaey, Ali</creator><creator>Wang, Jing</creator><general>American Association for Cancer Research Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7U7</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>201702</creationdate><title>Dual HDAC and PI3K Inhibitor CUDC-907 Downregulates MYC and Suppresses Growth of MYC-dependent Cancers</title><author>Sun, Kaiming ; Atoyan, Ruzanna ; Borek, Mylissa A ; Dellarocca, Steven ; Samson, Maria Elena S ; Ma, Anna W ; Xu, Guang-Xin ; Patterson, Troy ; Tuck, David P ; Viner, Jaye L ; Fattaey, Ali ; Wang, Jing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-3f28fced30900c84c409d269dd1544e978bd9ad004eb34ab6e76df643df7f3cb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>1-Phosphatidylinositol 3-kinase</topic><topic>Animal models</topic><topic>Animals</topic><topic>Anticancer properties</topic><topic>Antineoplastic Agents - pharmacology</topic><topic>Antitumor activity</topic><topic>Apoptosis</topic><topic>Apoptosis - drug effects</topic><topic>Apoptosis - genetics</topic><topic>B-cell lymphoma</topic><topic>Cancer</topic><topic>Cell death</topic><topic>Cell Line, Tumor</topic><topic>Cell Proliferation - drug effects</topic><topic>Disease Models, Animal</topic><topic>Dose-Response Relationship, Drug</topic><topic>Female</topic><topic>Gene Expression Regulation, Neoplastic - drug effects</topic><topic>Genes, myc</topic><topic>Histone deacetylase</topic><topic>Histone Deacetylase Inhibitors - pharmacology</topic><topic>Humans</topic><topic>Inhibition</topic><topic>Inhibitors</topic><topic>Kinases</topic><topic>Lymphocytes B</topic><topic>Lymphoma</topic><topic>Lymphoma, B-Cell - drug therapy</topic><topic>Lymphoma, B-Cell - genetics</topic><topic>Lymphoma, B-Cell - metabolism</topic><topic>Lymphoma, B-Cell - pathology</topic><topic>Mice</topic><topic>Mice, Transgenic</topic><topic>Myc protein</topic><topic>Neoplasms - drug therapy</topic><topic>Neoplasms - genetics</topic><topic>Neoplasms - metabolism</topic><topic>Neoplasms - pathology</topic><topic>Phosphatidylinositol 3-Kinases - antagonists &amp; inhibitors</topic><topic>Proteins</topic><topic>Proteolysis</topic><topic>Regulators</topic><topic>Solid tumors</topic><topic>Transcription</topic><topic>Tumor Burden - drug effects</topic><topic>Tumors</topic><topic>Xenograft Model Antitumor Assays</topic><topic>Xenografts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Kaiming</creatorcontrib><creatorcontrib>Atoyan, Ruzanna</creatorcontrib><creatorcontrib>Borek, Mylissa A</creatorcontrib><creatorcontrib>Dellarocca, Steven</creatorcontrib><creatorcontrib>Samson, Maria Elena S</creatorcontrib><creatorcontrib>Ma, Anna W</creatorcontrib><creatorcontrib>Xu, Guang-Xin</creatorcontrib><creatorcontrib>Patterson, Troy</creatorcontrib><creatorcontrib>Tuck, David P</creatorcontrib><creatorcontrib>Viner, Jaye L</creatorcontrib><creatorcontrib>Fattaey, Ali</creatorcontrib><creatorcontrib>Wang, Jing</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular cancer therapeutics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Kaiming</au><au>Atoyan, Ruzanna</au><au>Borek, Mylissa A</au><au>Dellarocca, Steven</au><au>Samson, Maria Elena S</au><au>Ma, Anna W</au><au>Xu, Guang-Xin</au><au>Patterson, Troy</au><au>Tuck, David P</au><au>Viner, Jaye L</au><au>Fattaey, Ali</au><au>Wang, Jing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dual HDAC and PI3K Inhibitor CUDC-907 Downregulates MYC and Suppresses Growth of MYC-dependent Cancers</atitle><jtitle>Molecular cancer therapeutics</jtitle><addtitle>Mol Cancer Ther</addtitle><date>2017-02</date><risdate>2017</risdate><volume>16</volume><issue>2</issue><spage>285</spage><epage>299</epage><pages>285-299</pages><issn>1535-7163</issn><eissn>1538-8514</eissn><abstract>Upregulation of MYC is a common driver event in human cancers, and some tumors depend on MYC to maintain transcriptional programs that promote cell growth and proliferation. Preclinical studies have suggested that individually targeting upstream regulators of MYC, such as histone deacetylases (HDAC) and phosphoinositide 3-kinases (PI3K), can reduce MYC protein levels and suppress the growth of MYC-driven cancers. Synergy between HDAC and PI3K inhibition in inducing cancer cell death has also been reported, but the involvement of MYC regulation is unclear. In this study, we demonstrated that HDAC and PI3K inhibition synergistically downregulates MYC protein levels and induces apoptosis in "double-hit" (DH) diffuse large B-cell lymphoma (DLBCL) cells. Furthermore, CUDC-907, a small-molecule dual-acting inhibitor of both class I and II HDACs and class I PI3Ks, effectively suppresses the growth and survival of MYC-altered or MYC-dependent cancer cells, such as DH DLBCL and BRD-NUT fusion-positive NUT midline carcinoma (NMC) cells, and MYC protein downregulation is an early event induced by CUDC-907 treatment. Consistently, the antitumor activity of CUDC-907 against multiple MYC-driven cancer types was also demonstrated in animal models, including DLBCL and NMC xenograft models, Myc transgenic tumor syngeneic models, and MYC-amplified solid tumor patient-derived xenograft (PDX) models. Our findings suggest that dual function HDAC and PI3K inhibitor CUDC-907 is an effective agent targeting MYC and thus may be developed as potential therapy for MYC-dependent cancers. Mol Cancer Ther; 16(2); 285-99. ©2016 AACR.</abstract><cop>United States</cop><pub>American Association for Cancer Research Inc</pub><pmid>27980108</pmid><doi>10.1158/1535-7163.MCT-16-0390</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1535-7163
ispartof Molecular cancer therapeutics, 2017-02, Vol.16 (2), p.285-299
issn 1535-7163
1538-8514
language eng
recordid cdi_proquest_miscellaneous_1852682633
source MEDLINE; American Association for Cancer Research; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects 1-Phosphatidylinositol 3-kinase
Animal models
Animals
Anticancer properties
Antineoplastic Agents - pharmacology
Antitumor activity
Apoptosis
Apoptosis - drug effects
Apoptosis - genetics
B-cell lymphoma
Cancer
Cell death
Cell Line, Tumor
Cell Proliferation - drug effects
Disease Models, Animal
Dose-Response Relationship, Drug
Female
Gene Expression Regulation, Neoplastic - drug effects
Genes, myc
Histone deacetylase
Histone Deacetylase Inhibitors - pharmacology
Humans
Inhibition
Inhibitors
Kinases
Lymphocytes B
Lymphoma
Lymphoma, B-Cell - drug therapy
Lymphoma, B-Cell - genetics
Lymphoma, B-Cell - metabolism
Lymphoma, B-Cell - pathology
Mice
Mice, Transgenic
Myc protein
Neoplasms - drug therapy
Neoplasms - genetics
Neoplasms - metabolism
Neoplasms - pathology
Phosphatidylinositol 3-Kinases - antagonists & inhibitors
Proteins
Proteolysis
Regulators
Solid tumors
Transcription
Tumor Burden - drug effects
Tumors
Xenograft Model Antitumor Assays
Xenografts
title Dual HDAC and PI3K Inhibitor CUDC-907 Downregulates MYC and Suppresses Growth of MYC-dependent Cancers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T05%3A50%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dual%20HDAC%20and%20PI3K%20Inhibitor%20CUDC-907%20Downregulates%20MYC%20and%20Suppresses%20Growth%20of%20MYC-dependent%20Cancers&rft.jtitle=Molecular%20cancer%20therapeutics&rft.au=Sun,%20Kaiming&rft.date=2017-02&rft.volume=16&rft.issue=2&rft.spage=285&rft.epage=299&rft.pages=285-299&rft.issn=1535-7163&rft.eissn=1538-8514&rft_id=info:doi/10.1158/1535-7163.MCT-16-0390&rft_dat=%3Cproquest_cross%3E1852682633%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1983852393&rft_id=info:pmid/27980108&rfr_iscdi=true