Rhizosphere microbiomes of potato cultivated in the High Andes show stable and dynamic core microbiomes with different responses to plant development
Abstract The rhizosphere hosts a rich microflora supporting plant nutrition and health. We examined bacterial rhizosphere microbiota of Solanum tuberosum grown in its center of origin, the Central Andean Highlands, at different vegetation stages and sites at altitudes ranging from 3245 to 4070 m.a.s...
Gespeichert in:
Veröffentlicht in: | FEMS microbiology ecology 2017-02, Vol.93 (2), p.1 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract
The rhizosphere hosts a rich microflora supporting plant nutrition and health. We examined bacterial rhizosphere microbiota of Solanum tuberosum grown in its center of origin, the Central Andean Highlands, at different vegetation stages and sites at altitudes ranging from 3245 to 4070 m.a.s.l., differing in soil characteristics, climate and the agricultural practices by 454 sequence analysis of 16S rRNA genes. We observed that the taxonomic composition of bacteria repeatedly occurring at particular stages of plant development was almost unaffected by highly diverse environmental conditions. A detailed statistical analysis on the operational taxonomic unit (OTU) level, representing bacterial species, revealed a complex community structure of the rhizosphere. We identified an opportunistic microbiome which comprises OTUs that occur randomly or under specific environmental conditions. In contrast, core microbiome members were found at all sites. The ‘stable’ component of the core microbiome consisted of few ubiquitous OTUs that were continuously abundant in all samples and vegetation stages, whereas the ‘dynamic’ component comprised OTUs that were enriched at specific vegetation stages.
The rhizosphere microflora of potato grown at distinct field locations in the Andean Altiplano show a core microbiome with stable and dynamic subsets responding differently to plant vegetation. |
---|---|
ISSN: | 1574-6941 0168-6496 1574-6941 |
DOI: | 10.1093/femsec/fiw242 |