Diffusion and Directionality of Charged Nanoparticles on Lipid Bilayer Membrane

Diffusion dynamics of charged nanoparticles on the lipid membrane is of essential importance to cellular functioning. Yet a fundamental insight into electrostatics-mediated diffusion dynamics of charged nanoparticles on the membrane is lacking and remains to be an urgent issue. Here we present the c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2016-12, Vol.10 (12), p.11541-11547
Hauptverfasser: Chen, Pengyu, Huang, Zihan, Liang, Junshi, Cui, Tianqi, Zhang, Xinghua, Miao, Bing, Yan, Li-Tang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11547
container_issue 12
container_start_page 11541
container_title ACS nano
container_volume 10
creator Chen, Pengyu
Huang, Zihan
Liang, Junshi
Cui, Tianqi
Zhang, Xinghua
Miao, Bing
Yan, Li-Tang
description Diffusion dynamics of charged nanoparticles on the lipid membrane is of essential importance to cellular functioning. Yet a fundamental insight into electrostatics-mediated diffusion dynamics of charged nanoparticles on the membrane is lacking and remains to be an urgent issue. Here we present the computational investigation to uncover the pivotal role of electrostatics in the diffusion dynamics of charged nanoparticles on the lipid membrane. Our results demonstrate diffusive behaviors and directional transport of a charged nanoparticle, significantly depending on the sign and spatial distribution of charges on its surface. In contrast to the Fickian diffusion of neutral nanoparticles, randomly charged nanoparticles undergo superdiffusive transport with directionality. However, the dynamics of uniformly charged nanoparticles favors Fickian diffusion that is significantly enhanced. Such observations can be explained in term of electrostatics-induced surface reconstruction and fluctuation of lipid membrane. We finally present an analytical model connecting surface reconstruction and local deformation of the membrane. Our findings bear wide implications for the understanding and control of the transport of charged nanoparticles on the cell membrane.
doi_str_mv 10.1021/acsnano.6b07563
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1852658940</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1852658940</sourcerecordid><originalsourceid>FETCH-LOGICAL-a333t-cebfa21f199b95d0b126184194eb1c2bbba4e5cc72a81a3cb2e34285468156693</originalsourceid><addsrcrecordid>eNp1kDtPwzAURi0EoqUwsyGPSCitH7HjjNDykgpdQGKzbMcBV3lhJ0P_PUYN3Zhsy-f77tUB4BKjOUYEL5QJjWraOdcoY5wegSnOKU-Q4B_HhzvDE3AWwhYhlomMn4IJyeIPy_gUbFauLIfg2gaqpoAr563p40tVrt_BtoTLL-U_bQFf45hO-d6ZygYY8bXrXAHvXKV21sMXW2uvGnsOTkpVBXsxnjPw_nD_tnxK1pvH5-XtOlGU0j4xVpeK4BLnuc5ZgTQmHIsU56nV2BCttUotMyYjSmBFjSaWpkSwlAvMOM_pDFzvezvffg829LJ2wdiqiju0Q5BYMMKZyFMU0cUeNb4NwdtSdt7Vyu8kRvLXohwtytFiTFyN5YOubXHg_7RF4GYPxKTctoOPvsK_dT8HY32t</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1852658940</pqid></control><display><type>article</type><title>Diffusion and Directionality of Charged Nanoparticles on Lipid Bilayer Membrane</title><source>ACS Publications</source><source>MEDLINE</source><creator>Chen, Pengyu ; Huang, Zihan ; Liang, Junshi ; Cui, Tianqi ; Zhang, Xinghua ; Miao, Bing ; Yan, Li-Tang</creator><creatorcontrib>Chen, Pengyu ; Huang, Zihan ; Liang, Junshi ; Cui, Tianqi ; Zhang, Xinghua ; Miao, Bing ; Yan, Li-Tang</creatorcontrib><description>Diffusion dynamics of charged nanoparticles on the lipid membrane is of essential importance to cellular functioning. Yet a fundamental insight into electrostatics-mediated diffusion dynamics of charged nanoparticles on the membrane is lacking and remains to be an urgent issue. Here we present the computational investigation to uncover the pivotal role of electrostatics in the diffusion dynamics of charged nanoparticles on the lipid membrane. Our results demonstrate diffusive behaviors and directional transport of a charged nanoparticle, significantly depending on the sign and spatial distribution of charges on its surface. In contrast to the Fickian diffusion of neutral nanoparticles, randomly charged nanoparticles undergo superdiffusive transport with directionality. However, the dynamics of uniformly charged nanoparticles favors Fickian diffusion that is significantly enhanced. Such observations can be explained in term of electrostatics-induced surface reconstruction and fluctuation of lipid membrane. We finally present an analytical model connecting surface reconstruction and local deformation of the membrane. Our findings bear wide implications for the understanding and control of the transport of charged nanoparticles on the cell membrane.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.6b07563</identifier><identifier>PMID: 27936576</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Cell Membrane ; Diffusion ; Lipid Bilayers ; Nanoparticles ; Static Electricity</subject><ispartof>ACS nano, 2016-12, Vol.10 (12), p.11541-11547</ispartof><rights>Copyright © 2016 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a333t-cebfa21f199b95d0b126184194eb1c2bbba4e5cc72a81a3cb2e34285468156693</citedby><cites>FETCH-LOGICAL-a333t-cebfa21f199b95d0b126184194eb1c2bbba4e5cc72a81a3cb2e34285468156693</cites><orcidid>0000-0002-6090-3039</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsnano.6b07563$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsnano.6b07563$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27936576$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Pengyu</creatorcontrib><creatorcontrib>Huang, Zihan</creatorcontrib><creatorcontrib>Liang, Junshi</creatorcontrib><creatorcontrib>Cui, Tianqi</creatorcontrib><creatorcontrib>Zhang, Xinghua</creatorcontrib><creatorcontrib>Miao, Bing</creatorcontrib><creatorcontrib>Yan, Li-Tang</creatorcontrib><title>Diffusion and Directionality of Charged Nanoparticles on Lipid Bilayer Membrane</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Diffusion dynamics of charged nanoparticles on the lipid membrane is of essential importance to cellular functioning. Yet a fundamental insight into electrostatics-mediated diffusion dynamics of charged nanoparticles on the membrane is lacking and remains to be an urgent issue. Here we present the computational investigation to uncover the pivotal role of electrostatics in the diffusion dynamics of charged nanoparticles on the lipid membrane. Our results demonstrate diffusive behaviors and directional transport of a charged nanoparticle, significantly depending on the sign and spatial distribution of charges on its surface. In contrast to the Fickian diffusion of neutral nanoparticles, randomly charged nanoparticles undergo superdiffusive transport with directionality. However, the dynamics of uniformly charged nanoparticles favors Fickian diffusion that is significantly enhanced. Such observations can be explained in term of electrostatics-induced surface reconstruction and fluctuation of lipid membrane. We finally present an analytical model connecting surface reconstruction and local deformation of the membrane. Our findings bear wide implications for the understanding and control of the transport of charged nanoparticles on the cell membrane.</description><subject>Cell Membrane</subject><subject>Diffusion</subject><subject>Lipid Bilayers</subject><subject>Nanoparticles</subject><subject>Static Electricity</subject><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kDtPwzAURi0EoqUwsyGPSCitH7HjjNDykgpdQGKzbMcBV3lhJ0P_PUYN3Zhsy-f77tUB4BKjOUYEL5QJjWraOdcoY5wegSnOKU-Q4B_HhzvDE3AWwhYhlomMn4IJyeIPy_gUbFauLIfg2gaqpoAr563p40tVrt_BtoTLL-U_bQFf45hO-d6ZygYY8bXrXAHvXKV21sMXW2uvGnsOTkpVBXsxnjPw_nD_tnxK1pvH5-XtOlGU0j4xVpeK4BLnuc5ZgTQmHIsU56nV2BCttUotMyYjSmBFjSaWpkSwlAvMOM_pDFzvezvffg829LJ2wdiqiju0Q5BYMMKZyFMU0cUeNb4NwdtSdt7Vyu8kRvLXohwtytFiTFyN5YOubXHg_7RF4GYPxKTctoOPvsK_dT8HY32t</recordid><startdate>20161227</startdate><enddate>20161227</enddate><creator>Chen, Pengyu</creator><creator>Huang, Zihan</creator><creator>Liang, Junshi</creator><creator>Cui, Tianqi</creator><creator>Zhang, Xinghua</creator><creator>Miao, Bing</creator><creator>Yan, Li-Tang</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6090-3039</orcidid></search><sort><creationdate>20161227</creationdate><title>Diffusion and Directionality of Charged Nanoparticles on Lipid Bilayer Membrane</title><author>Chen, Pengyu ; Huang, Zihan ; Liang, Junshi ; Cui, Tianqi ; Zhang, Xinghua ; Miao, Bing ; Yan, Li-Tang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a333t-cebfa21f199b95d0b126184194eb1c2bbba4e5cc72a81a3cb2e34285468156693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Cell Membrane</topic><topic>Diffusion</topic><topic>Lipid Bilayers</topic><topic>Nanoparticles</topic><topic>Static Electricity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Pengyu</creatorcontrib><creatorcontrib>Huang, Zihan</creatorcontrib><creatorcontrib>Liang, Junshi</creatorcontrib><creatorcontrib>Cui, Tianqi</creatorcontrib><creatorcontrib>Zhang, Xinghua</creatorcontrib><creatorcontrib>Miao, Bing</creatorcontrib><creatorcontrib>Yan, Li-Tang</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Pengyu</au><au>Huang, Zihan</au><au>Liang, Junshi</au><au>Cui, Tianqi</au><au>Zhang, Xinghua</au><au>Miao, Bing</au><au>Yan, Li-Tang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Diffusion and Directionality of Charged Nanoparticles on Lipid Bilayer Membrane</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2016-12-27</date><risdate>2016</risdate><volume>10</volume><issue>12</issue><spage>11541</spage><epage>11547</epage><pages>11541-11547</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>Diffusion dynamics of charged nanoparticles on the lipid membrane is of essential importance to cellular functioning. Yet a fundamental insight into electrostatics-mediated diffusion dynamics of charged nanoparticles on the membrane is lacking and remains to be an urgent issue. Here we present the computational investigation to uncover the pivotal role of electrostatics in the diffusion dynamics of charged nanoparticles on the lipid membrane. Our results demonstrate diffusive behaviors and directional transport of a charged nanoparticle, significantly depending on the sign and spatial distribution of charges on its surface. In contrast to the Fickian diffusion of neutral nanoparticles, randomly charged nanoparticles undergo superdiffusive transport with directionality. However, the dynamics of uniformly charged nanoparticles favors Fickian diffusion that is significantly enhanced. Such observations can be explained in term of electrostatics-induced surface reconstruction and fluctuation of lipid membrane. We finally present an analytical model connecting surface reconstruction and local deformation of the membrane. Our findings bear wide implications for the understanding and control of the transport of charged nanoparticles on the cell membrane.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>27936576</pmid><doi>10.1021/acsnano.6b07563</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-6090-3039</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2016-12, Vol.10 (12), p.11541-11547
issn 1936-0851
1936-086X
language eng
recordid cdi_proquest_miscellaneous_1852658940
source ACS Publications; MEDLINE
subjects Cell Membrane
Diffusion
Lipid Bilayers
Nanoparticles
Static Electricity
title Diffusion and Directionality of Charged Nanoparticles on Lipid Bilayer Membrane
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T11%3A04%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Diffusion%20and%20Directionality%20of%20Charged%20Nanoparticles%20on%20Lipid%20Bilayer%20Membrane&rft.jtitle=ACS%20nano&rft.au=Chen,%20Pengyu&rft.date=2016-12-27&rft.volume=10&rft.issue=12&rft.spage=11541&rft.epage=11547&rft.pages=11541-11547&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.6b07563&rft_dat=%3Cproquest_cross%3E1852658940%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1852658940&rft_id=info:pmid/27936576&rfr_iscdi=true