Diffusion and Directionality of Charged Nanoparticles on Lipid Bilayer Membrane
Diffusion dynamics of charged nanoparticles on the lipid membrane is of essential importance to cellular functioning. Yet a fundamental insight into electrostatics-mediated diffusion dynamics of charged nanoparticles on the membrane is lacking and remains to be an urgent issue. Here we present the c...
Gespeichert in:
Veröffentlicht in: | ACS nano 2016-12, Vol.10 (12), p.11541-11547 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11547 |
---|---|
container_issue | 12 |
container_start_page | 11541 |
container_title | ACS nano |
container_volume | 10 |
creator | Chen, Pengyu Huang, Zihan Liang, Junshi Cui, Tianqi Zhang, Xinghua Miao, Bing Yan, Li-Tang |
description | Diffusion dynamics of charged nanoparticles on the lipid membrane is of essential importance to cellular functioning. Yet a fundamental insight into electrostatics-mediated diffusion dynamics of charged nanoparticles on the membrane is lacking and remains to be an urgent issue. Here we present the computational investigation to uncover the pivotal role of electrostatics in the diffusion dynamics of charged nanoparticles on the lipid membrane. Our results demonstrate diffusive behaviors and directional transport of a charged nanoparticle, significantly depending on the sign and spatial distribution of charges on its surface. In contrast to the Fickian diffusion of neutral nanoparticles, randomly charged nanoparticles undergo superdiffusive transport with directionality. However, the dynamics of uniformly charged nanoparticles favors Fickian diffusion that is significantly enhanced. Such observations can be explained in term of electrostatics-induced surface reconstruction and fluctuation of lipid membrane. We finally present an analytical model connecting surface reconstruction and local deformation of the membrane. Our findings bear wide implications for the understanding and control of the transport of charged nanoparticles on the cell membrane. |
doi_str_mv | 10.1021/acsnano.6b07563 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1852658940</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1852658940</sourcerecordid><originalsourceid>FETCH-LOGICAL-a333t-cebfa21f199b95d0b126184194eb1c2bbba4e5cc72a81a3cb2e34285468156693</originalsourceid><addsrcrecordid>eNp1kDtPwzAURi0EoqUwsyGPSCitH7HjjNDykgpdQGKzbMcBV3lhJ0P_PUYN3Zhsy-f77tUB4BKjOUYEL5QJjWraOdcoY5wegSnOKU-Q4B_HhzvDE3AWwhYhlomMn4IJyeIPy_gUbFauLIfg2gaqpoAr563p40tVrt_BtoTLL-U_bQFf45hO-d6ZygYY8bXrXAHvXKV21sMXW2uvGnsOTkpVBXsxnjPw_nD_tnxK1pvH5-XtOlGU0j4xVpeK4BLnuc5ZgTQmHIsU56nV2BCttUotMyYjSmBFjSaWpkSwlAvMOM_pDFzvezvffg829LJ2wdiqiju0Q5BYMMKZyFMU0cUeNb4NwdtSdt7Vyu8kRvLXohwtytFiTFyN5YOubXHg_7RF4GYPxKTctoOPvsK_dT8HY32t</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1852658940</pqid></control><display><type>article</type><title>Diffusion and Directionality of Charged Nanoparticles on Lipid Bilayer Membrane</title><source>ACS Publications</source><source>MEDLINE</source><creator>Chen, Pengyu ; Huang, Zihan ; Liang, Junshi ; Cui, Tianqi ; Zhang, Xinghua ; Miao, Bing ; Yan, Li-Tang</creator><creatorcontrib>Chen, Pengyu ; Huang, Zihan ; Liang, Junshi ; Cui, Tianqi ; Zhang, Xinghua ; Miao, Bing ; Yan, Li-Tang</creatorcontrib><description>Diffusion dynamics of charged nanoparticles on the lipid membrane is of essential importance to cellular functioning. Yet a fundamental insight into electrostatics-mediated diffusion dynamics of charged nanoparticles on the membrane is lacking and remains to be an urgent issue. Here we present the computational investigation to uncover the pivotal role of electrostatics in the diffusion dynamics of charged nanoparticles on the lipid membrane. Our results demonstrate diffusive behaviors and directional transport of a charged nanoparticle, significantly depending on the sign and spatial distribution of charges on its surface. In contrast to the Fickian diffusion of neutral nanoparticles, randomly charged nanoparticles undergo superdiffusive transport with directionality. However, the dynamics of uniformly charged nanoparticles favors Fickian diffusion that is significantly enhanced. Such observations can be explained in term of electrostatics-induced surface reconstruction and fluctuation of lipid membrane. We finally present an analytical model connecting surface reconstruction and local deformation of the membrane. Our findings bear wide implications for the understanding and control of the transport of charged nanoparticles on the cell membrane.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.6b07563</identifier><identifier>PMID: 27936576</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Cell Membrane ; Diffusion ; Lipid Bilayers ; Nanoparticles ; Static Electricity</subject><ispartof>ACS nano, 2016-12, Vol.10 (12), p.11541-11547</ispartof><rights>Copyright © 2016 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a333t-cebfa21f199b95d0b126184194eb1c2bbba4e5cc72a81a3cb2e34285468156693</citedby><cites>FETCH-LOGICAL-a333t-cebfa21f199b95d0b126184194eb1c2bbba4e5cc72a81a3cb2e34285468156693</cites><orcidid>0000-0002-6090-3039</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsnano.6b07563$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsnano.6b07563$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27936576$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Pengyu</creatorcontrib><creatorcontrib>Huang, Zihan</creatorcontrib><creatorcontrib>Liang, Junshi</creatorcontrib><creatorcontrib>Cui, Tianqi</creatorcontrib><creatorcontrib>Zhang, Xinghua</creatorcontrib><creatorcontrib>Miao, Bing</creatorcontrib><creatorcontrib>Yan, Li-Tang</creatorcontrib><title>Diffusion and Directionality of Charged Nanoparticles on Lipid Bilayer Membrane</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Diffusion dynamics of charged nanoparticles on the lipid membrane is of essential importance to cellular functioning. Yet a fundamental insight into electrostatics-mediated diffusion dynamics of charged nanoparticles on the membrane is lacking and remains to be an urgent issue. Here we present the computational investigation to uncover the pivotal role of electrostatics in the diffusion dynamics of charged nanoparticles on the lipid membrane. Our results demonstrate diffusive behaviors and directional transport of a charged nanoparticle, significantly depending on the sign and spatial distribution of charges on its surface. In contrast to the Fickian diffusion of neutral nanoparticles, randomly charged nanoparticles undergo superdiffusive transport with directionality. However, the dynamics of uniformly charged nanoparticles favors Fickian diffusion that is significantly enhanced. Such observations can be explained in term of electrostatics-induced surface reconstruction and fluctuation of lipid membrane. We finally present an analytical model connecting surface reconstruction and local deformation of the membrane. Our findings bear wide implications for the understanding and control of the transport of charged nanoparticles on the cell membrane.</description><subject>Cell Membrane</subject><subject>Diffusion</subject><subject>Lipid Bilayers</subject><subject>Nanoparticles</subject><subject>Static Electricity</subject><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kDtPwzAURi0EoqUwsyGPSCitH7HjjNDykgpdQGKzbMcBV3lhJ0P_PUYN3Zhsy-f77tUB4BKjOUYEL5QJjWraOdcoY5wegSnOKU-Q4B_HhzvDE3AWwhYhlomMn4IJyeIPy_gUbFauLIfg2gaqpoAr563p40tVrt_BtoTLL-U_bQFf45hO-d6ZygYY8bXrXAHvXKV21sMXW2uvGnsOTkpVBXsxnjPw_nD_tnxK1pvH5-XtOlGU0j4xVpeK4BLnuc5ZgTQmHIsU56nV2BCttUotMyYjSmBFjSaWpkSwlAvMOM_pDFzvezvffg829LJ2wdiqiju0Q5BYMMKZyFMU0cUeNb4NwdtSdt7Vyu8kRvLXohwtytFiTFyN5YOubXHg_7RF4GYPxKTctoOPvsK_dT8HY32t</recordid><startdate>20161227</startdate><enddate>20161227</enddate><creator>Chen, Pengyu</creator><creator>Huang, Zihan</creator><creator>Liang, Junshi</creator><creator>Cui, Tianqi</creator><creator>Zhang, Xinghua</creator><creator>Miao, Bing</creator><creator>Yan, Li-Tang</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6090-3039</orcidid></search><sort><creationdate>20161227</creationdate><title>Diffusion and Directionality of Charged Nanoparticles on Lipid Bilayer Membrane</title><author>Chen, Pengyu ; Huang, Zihan ; Liang, Junshi ; Cui, Tianqi ; Zhang, Xinghua ; Miao, Bing ; Yan, Li-Tang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a333t-cebfa21f199b95d0b126184194eb1c2bbba4e5cc72a81a3cb2e34285468156693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Cell Membrane</topic><topic>Diffusion</topic><topic>Lipid Bilayers</topic><topic>Nanoparticles</topic><topic>Static Electricity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Pengyu</creatorcontrib><creatorcontrib>Huang, Zihan</creatorcontrib><creatorcontrib>Liang, Junshi</creatorcontrib><creatorcontrib>Cui, Tianqi</creatorcontrib><creatorcontrib>Zhang, Xinghua</creatorcontrib><creatorcontrib>Miao, Bing</creatorcontrib><creatorcontrib>Yan, Li-Tang</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Pengyu</au><au>Huang, Zihan</au><au>Liang, Junshi</au><au>Cui, Tianqi</au><au>Zhang, Xinghua</au><au>Miao, Bing</au><au>Yan, Li-Tang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Diffusion and Directionality of Charged Nanoparticles on Lipid Bilayer Membrane</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2016-12-27</date><risdate>2016</risdate><volume>10</volume><issue>12</issue><spage>11541</spage><epage>11547</epage><pages>11541-11547</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>Diffusion dynamics of charged nanoparticles on the lipid membrane is of essential importance to cellular functioning. Yet a fundamental insight into electrostatics-mediated diffusion dynamics of charged nanoparticles on the membrane is lacking and remains to be an urgent issue. Here we present the computational investigation to uncover the pivotal role of electrostatics in the diffusion dynamics of charged nanoparticles on the lipid membrane. Our results demonstrate diffusive behaviors and directional transport of a charged nanoparticle, significantly depending on the sign and spatial distribution of charges on its surface. In contrast to the Fickian diffusion of neutral nanoparticles, randomly charged nanoparticles undergo superdiffusive transport with directionality. However, the dynamics of uniformly charged nanoparticles favors Fickian diffusion that is significantly enhanced. Such observations can be explained in term of electrostatics-induced surface reconstruction and fluctuation of lipid membrane. We finally present an analytical model connecting surface reconstruction and local deformation of the membrane. Our findings bear wide implications for the understanding and control of the transport of charged nanoparticles on the cell membrane.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>27936576</pmid><doi>10.1021/acsnano.6b07563</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-6090-3039</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1936-0851 |
ispartof | ACS nano, 2016-12, Vol.10 (12), p.11541-11547 |
issn | 1936-0851 1936-086X |
language | eng |
recordid | cdi_proquest_miscellaneous_1852658940 |
source | ACS Publications; MEDLINE |
subjects | Cell Membrane Diffusion Lipid Bilayers Nanoparticles Static Electricity |
title | Diffusion and Directionality of Charged Nanoparticles on Lipid Bilayer Membrane |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T11%3A04%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Diffusion%20and%20Directionality%20of%20Charged%20Nanoparticles%20on%20Lipid%20Bilayer%20Membrane&rft.jtitle=ACS%20nano&rft.au=Chen,%20Pengyu&rft.date=2016-12-27&rft.volume=10&rft.issue=12&rft.spage=11541&rft.epage=11547&rft.pages=11541-11547&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.6b07563&rft_dat=%3Cproquest_cross%3E1852658940%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1852658940&rft_id=info:pmid/27936576&rfr_iscdi=true |