Antiplatelet activity of flavonoid and coumarin drugs

Abstract Polyphenols are used as phlebotonic drugs, but their mechanism of action remains unknown. Since platelet activity and platelet-endothelial cell interactions are involved in the pathogenesis of cardiovascular disease, this work examines whether different flavonoid and coumarin drugs are able...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Vascular pharmacology 2016-12, Vol.87, p.139-149
Hauptverfasser: Arnaéz, Cristina Zaragozá, Sanz, Jorge Monserrat, Ramiro, Carolina Mantecón, Castillo, Lucinda Villaescusa, García, Francisco Zaragozá, de Mon Soto, Melchor Álvarez
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 149
container_issue
container_start_page 139
container_title Vascular pharmacology
container_volume 87
creator Arnaéz, Cristina Zaragozá
Sanz, Jorge Monserrat
Ramiro, Carolina Mantecón
Castillo, Lucinda Villaescusa
García, Francisco Zaragozá
de Mon Soto, Melchor Álvarez
description Abstract Polyphenols are used as phlebotonic drugs, but their mechanism of action remains unknown. Since platelet activity and platelet-endothelial cell interactions are involved in the pathogenesis of cardiovascular disease, this work examines whether different flavonoid and coumarin drugs are able to inhibit platelet aggregation. This specific case of coumarins, the antiplatelet effect is not linked with a possible interaction over blood coagulation since this effect only dicoumarols have it. The antiplatelet capacity of polyphenols was assayed using peripheral blood platelets from healthy controls. The distribution of the different platelets subsets was quantified by flow cytometry, using the calcium ionophore as a pro-aggregant. The number of GPIIb/IIIa receptors occupied by the drugs was assayed by flow cytometry using two CD61 surface fluorescein antibodies. All the polyphenols tested inhibited platelet aggregation. A percentage antiplatelet activity of 88.91 ± 7.98% was recorded for naringin, 48.43 ± 8.84% for naringenin, 53.83 ± 7.87% for esculetin, 54.65 ± 6.91% for fraxetin, and 25.75 ± 4.12% for coumarin. Naringin showed significantly greater percentage occupation of GPIIb/IIIa receptors than did naringenin (14.82 ± 0.81% vs. 3.90 ± 0.55%), and esculetin returned significantly higher values than fraxetin and coumarin (12.47 ± 0.97 vs. 7.53 ± 0.49 and 7.90 ± 0.69 respectively). All drugs show important antiplatelet activity. Naringin was the best antiplatelet compound, showing the greatest antiplatelet activity and the highest percentage binding of GPIIb/IIIa receptors. However, any of the compounds used could be used in the prevention of cardiovascular disease.
doi_str_mv 10.1016/j.vph.2016.09.002
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1852655644</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1537189116300180</els_id><sourcerecordid>1852655644</sourcerecordid><originalsourceid>FETCH-LOGICAL-c436t-e808a0ac77ab91df5f8ebbef99568ad464fa022f6f5bb248b4446ce07bb399a43</originalsourceid><addsrcrecordid>eNp9kcFKHTEUhoO0qFUfoJsy0E03M00ySSZBEERaFQQX1nVIMic217mT22Tmwn37ZrjqwoWrnMX3_-R8B6GvBDcEE_Fz1Ww3fxtaxgarBmN6gI6J7FTdCqY-lZm3XU2kIkfoS84rjImUQh2iI9oJIkQrjhG_HKewGcwEA0yVcVPYhmlXRV_5wWzjGENfmbGvXJzXJoWx6tP8lE_RZ2-GDGcv7wl6_P3rz9VNfXd_fXt1eVc71oqpBomlwcZ1nbGK9J57CdaCV4oLaXommDeYUi88t5YyaRljwgHurG2VMqw9QT_2vZsU_82QJ70O2cEwmBHinDWRnArOBVvQ7-_QVZzTWH6nKe4k4UXGQpE95VLMOYHXmxTKYjtNsF6c6pUuTvXiVGOli9OS-fbSPNs19G-JV4kFON8DUFRsAySdXYDRQR8SuEn3MXxYf_Eu7YYwBmeGZ9hBftuC6Ew11g_LUZebEtEuB8Xtf5IjmzI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2078151534</pqid></control><display><type>article</type><title>Antiplatelet activity of flavonoid and coumarin drugs</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Arnaéz, Cristina Zaragozá ; Sanz, Jorge Monserrat ; Ramiro, Carolina Mantecón ; Castillo, Lucinda Villaescusa ; García, Francisco Zaragozá ; de Mon Soto, Melchor Álvarez</creator><creatorcontrib>Arnaéz, Cristina Zaragozá ; Sanz, Jorge Monserrat ; Ramiro, Carolina Mantecón ; Castillo, Lucinda Villaescusa ; García, Francisco Zaragozá ; de Mon Soto, Melchor Álvarez</creatorcontrib><description>Abstract Polyphenols are used as phlebotonic drugs, but their mechanism of action remains unknown. Since platelet activity and platelet-endothelial cell interactions are involved in the pathogenesis of cardiovascular disease, this work examines whether different flavonoid and coumarin drugs are able to inhibit platelet aggregation. This specific case of coumarins, the antiplatelet effect is not linked with a possible interaction over blood coagulation since this effect only dicoumarols have it. The antiplatelet capacity of polyphenols was assayed using peripheral blood platelets from healthy controls. The distribution of the different platelets subsets was quantified by flow cytometry, using the calcium ionophore as a pro-aggregant. The number of GPIIb/IIIa receptors occupied by the drugs was assayed by flow cytometry using two CD61 surface fluorescein antibodies. All the polyphenols tested inhibited platelet aggregation. A percentage antiplatelet activity of 88.91 ± 7.98% was recorded for naringin, 48.43 ± 8.84% for naringenin, 53.83 ± 7.87% for esculetin, 54.65 ± 6.91% for fraxetin, and 25.75 ± 4.12% for coumarin. Naringin showed significantly greater percentage occupation of GPIIb/IIIa receptors than did naringenin (14.82 ± 0.81% vs. 3.90 ± 0.55%), and esculetin returned significantly higher values than fraxetin and coumarin (12.47 ± 0.97 vs. 7.53 ± 0.49 and 7.90 ± 0.69 respectively). All drugs show important antiplatelet activity. Naringin was the best antiplatelet compound, showing the greatest antiplatelet activity and the highest percentage binding of GPIIb/IIIa receptors. However, any of the compounds used could be used in the prevention of cardiovascular disease.</description><identifier>ISSN: 1537-1891</identifier><identifier>EISSN: 1879-3649</identifier><identifier>DOI: 10.1016/j.vph.2016.09.002</identifier><identifier>PMID: 27616636</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Agglomeration ; Antibodies ; Blood coagulation ; Blood platelets ; Blood Platelets - drug effects ; Blood Platelets - metabolism ; Calcium ; Calcium ionophores ; Cardiovascular ; Cardiovascular diseases ; Cell interactions ; Coumarin ; Coumarins - pharmacology ; Drugs ; Endothelial cells ; Female ; Flavonoid ; Flavonoids ; Flavonoids - pharmacology ; Flow Cytometry ; Fluorescein ; GPIIb/IIIa ; Humans ; In Vitro Techniques ; Male ; Naringenin ; Pathogenesis ; Peripheral blood ; Platelet ; Platelet aggregation ; Platelet Aggregation - drug effects ; Platelet Aggregation Inhibitors - pharmacology ; Platelet Glycoprotein GPIIb-IIIa Complex - metabolism ; Platelets ; Polyphenols ; Polyphenols - pharmacology ; Receptors ; Young Adult</subject><ispartof>Vascular pharmacology, 2016-12, Vol.87, p.139-149</ispartof><rights>2016 Elsevier Inc.</rights><rights>Copyright © 2016 Elsevier Inc. All rights reserved.</rights><rights>Copyright Elsevier Science Ltd. Dec 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c436t-e808a0ac77ab91df5f8ebbef99568ad464fa022f6f5bb248b4446ce07bb399a43</citedby><cites>FETCH-LOGICAL-c436t-e808a0ac77ab91df5f8ebbef99568ad464fa022f6f5bb248b4446ce07bb399a43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.vph.2016.09.002$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27616636$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Arnaéz, Cristina Zaragozá</creatorcontrib><creatorcontrib>Sanz, Jorge Monserrat</creatorcontrib><creatorcontrib>Ramiro, Carolina Mantecón</creatorcontrib><creatorcontrib>Castillo, Lucinda Villaescusa</creatorcontrib><creatorcontrib>García, Francisco Zaragozá</creatorcontrib><creatorcontrib>de Mon Soto, Melchor Álvarez</creatorcontrib><title>Antiplatelet activity of flavonoid and coumarin drugs</title><title>Vascular pharmacology</title><addtitle>Vascul Pharmacol</addtitle><description>Abstract Polyphenols are used as phlebotonic drugs, but their mechanism of action remains unknown. Since platelet activity and platelet-endothelial cell interactions are involved in the pathogenesis of cardiovascular disease, this work examines whether different flavonoid and coumarin drugs are able to inhibit platelet aggregation. This specific case of coumarins, the antiplatelet effect is not linked with a possible interaction over blood coagulation since this effect only dicoumarols have it. The antiplatelet capacity of polyphenols was assayed using peripheral blood platelets from healthy controls. The distribution of the different platelets subsets was quantified by flow cytometry, using the calcium ionophore as a pro-aggregant. The number of GPIIb/IIIa receptors occupied by the drugs was assayed by flow cytometry using two CD61 surface fluorescein antibodies. All the polyphenols tested inhibited platelet aggregation. A percentage antiplatelet activity of 88.91 ± 7.98% was recorded for naringin, 48.43 ± 8.84% for naringenin, 53.83 ± 7.87% for esculetin, 54.65 ± 6.91% for fraxetin, and 25.75 ± 4.12% for coumarin. Naringin showed significantly greater percentage occupation of GPIIb/IIIa receptors than did naringenin (14.82 ± 0.81% vs. 3.90 ± 0.55%), and esculetin returned significantly higher values than fraxetin and coumarin (12.47 ± 0.97 vs. 7.53 ± 0.49 and 7.90 ± 0.69 respectively). All drugs show important antiplatelet activity. Naringin was the best antiplatelet compound, showing the greatest antiplatelet activity and the highest percentage binding of GPIIb/IIIa receptors. However, any of the compounds used could be used in the prevention of cardiovascular disease.</description><subject>Agglomeration</subject><subject>Antibodies</subject><subject>Blood coagulation</subject><subject>Blood platelets</subject><subject>Blood Platelets - drug effects</subject><subject>Blood Platelets - metabolism</subject><subject>Calcium</subject><subject>Calcium ionophores</subject><subject>Cardiovascular</subject><subject>Cardiovascular diseases</subject><subject>Cell interactions</subject><subject>Coumarin</subject><subject>Coumarins - pharmacology</subject><subject>Drugs</subject><subject>Endothelial cells</subject><subject>Female</subject><subject>Flavonoid</subject><subject>Flavonoids</subject><subject>Flavonoids - pharmacology</subject><subject>Flow Cytometry</subject><subject>Fluorescein</subject><subject>GPIIb/IIIa</subject><subject>Humans</subject><subject>In Vitro Techniques</subject><subject>Male</subject><subject>Naringenin</subject><subject>Pathogenesis</subject><subject>Peripheral blood</subject><subject>Platelet</subject><subject>Platelet aggregation</subject><subject>Platelet Aggregation - drug effects</subject><subject>Platelet Aggregation Inhibitors - pharmacology</subject><subject>Platelet Glycoprotein GPIIb-IIIa Complex - metabolism</subject><subject>Platelets</subject><subject>Polyphenols</subject><subject>Polyphenols - pharmacology</subject><subject>Receptors</subject><subject>Young Adult</subject><issn>1537-1891</issn><issn>1879-3649</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kcFKHTEUhoO0qFUfoJsy0E03M00ySSZBEERaFQQX1nVIMic217mT22Tmwn37ZrjqwoWrnMX3_-R8B6GvBDcEE_Fz1Ww3fxtaxgarBmN6gI6J7FTdCqY-lZm3XU2kIkfoS84rjImUQh2iI9oJIkQrjhG_HKewGcwEA0yVcVPYhmlXRV_5wWzjGENfmbGvXJzXJoWx6tP8lE_RZ2-GDGcv7wl6_P3rz9VNfXd_fXt1eVc71oqpBomlwcZ1nbGK9J57CdaCV4oLaXommDeYUi88t5YyaRljwgHurG2VMqw9QT_2vZsU_82QJ70O2cEwmBHinDWRnArOBVvQ7-_QVZzTWH6nKe4k4UXGQpE95VLMOYHXmxTKYjtNsF6c6pUuTvXiVGOli9OS-fbSPNs19G-JV4kFON8DUFRsAySdXYDRQR8SuEn3MXxYf_Eu7YYwBmeGZ9hBftuC6Ew11g_LUZebEtEuB8Xtf5IjmzI</recordid><startdate>20161201</startdate><enddate>20161201</enddate><creator>Arnaéz, Cristina Zaragozá</creator><creator>Sanz, Jorge Monserrat</creator><creator>Ramiro, Carolina Mantecón</creator><creator>Castillo, Lucinda Villaescusa</creator><creator>García, Francisco Zaragozá</creator><creator>de Mon Soto, Melchor Álvarez</creator><general>Elsevier Inc</general><general>Elsevier Science Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7T5</scope><scope>7U7</scope><scope>C1K</scope><scope>H94</scope><scope>7X8</scope></search><sort><creationdate>20161201</creationdate><title>Antiplatelet activity of flavonoid and coumarin drugs</title><author>Arnaéz, Cristina Zaragozá ; Sanz, Jorge Monserrat ; Ramiro, Carolina Mantecón ; Castillo, Lucinda Villaescusa ; García, Francisco Zaragozá ; de Mon Soto, Melchor Álvarez</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c436t-e808a0ac77ab91df5f8ebbef99568ad464fa022f6f5bb248b4446ce07bb399a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Agglomeration</topic><topic>Antibodies</topic><topic>Blood coagulation</topic><topic>Blood platelets</topic><topic>Blood Platelets - drug effects</topic><topic>Blood Platelets - metabolism</topic><topic>Calcium</topic><topic>Calcium ionophores</topic><topic>Cardiovascular</topic><topic>Cardiovascular diseases</topic><topic>Cell interactions</topic><topic>Coumarin</topic><topic>Coumarins - pharmacology</topic><topic>Drugs</topic><topic>Endothelial cells</topic><topic>Female</topic><topic>Flavonoid</topic><topic>Flavonoids</topic><topic>Flavonoids - pharmacology</topic><topic>Flow Cytometry</topic><topic>Fluorescein</topic><topic>GPIIb/IIIa</topic><topic>Humans</topic><topic>In Vitro Techniques</topic><topic>Male</topic><topic>Naringenin</topic><topic>Pathogenesis</topic><topic>Peripheral blood</topic><topic>Platelet</topic><topic>Platelet aggregation</topic><topic>Platelet Aggregation - drug effects</topic><topic>Platelet Aggregation Inhibitors - pharmacology</topic><topic>Platelet Glycoprotein GPIIb-IIIa Complex - metabolism</topic><topic>Platelets</topic><topic>Polyphenols</topic><topic>Polyphenols - pharmacology</topic><topic>Receptors</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arnaéz, Cristina Zaragozá</creatorcontrib><creatorcontrib>Sanz, Jorge Monserrat</creatorcontrib><creatorcontrib>Ramiro, Carolina Mantecón</creatorcontrib><creatorcontrib>Castillo, Lucinda Villaescusa</creatorcontrib><creatorcontrib>García, Francisco Zaragozá</creatorcontrib><creatorcontrib>de Mon Soto, Melchor Álvarez</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Immunology Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Vascular pharmacology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arnaéz, Cristina Zaragozá</au><au>Sanz, Jorge Monserrat</au><au>Ramiro, Carolina Mantecón</au><au>Castillo, Lucinda Villaescusa</au><au>García, Francisco Zaragozá</au><au>de Mon Soto, Melchor Álvarez</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Antiplatelet activity of flavonoid and coumarin drugs</atitle><jtitle>Vascular pharmacology</jtitle><addtitle>Vascul Pharmacol</addtitle><date>2016-12-01</date><risdate>2016</risdate><volume>87</volume><spage>139</spage><epage>149</epage><pages>139-149</pages><issn>1537-1891</issn><eissn>1879-3649</eissn><abstract>Abstract Polyphenols are used as phlebotonic drugs, but their mechanism of action remains unknown. Since platelet activity and platelet-endothelial cell interactions are involved in the pathogenesis of cardiovascular disease, this work examines whether different flavonoid and coumarin drugs are able to inhibit platelet aggregation. This specific case of coumarins, the antiplatelet effect is not linked with a possible interaction over blood coagulation since this effect only dicoumarols have it. The antiplatelet capacity of polyphenols was assayed using peripheral blood platelets from healthy controls. The distribution of the different platelets subsets was quantified by flow cytometry, using the calcium ionophore as a pro-aggregant. The number of GPIIb/IIIa receptors occupied by the drugs was assayed by flow cytometry using two CD61 surface fluorescein antibodies. All the polyphenols tested inhibited platelet aggregation. A percentage antiplatelet activity of 88.91 ± 7.98% was recorded for naringin, 48.43 ± 8.84% for naringenin, 53.83 ± 7.87% for esculetin, 54.65 ± 6.91% for fraxetin, and 25.75 ± 4.12% for coumarin. Naringin showed significantly greater percentage occupation of GPIIb/IIIa receptors than did naringenin (14.82 ± 0.81% vs. 3.90 ± 0.55%), and esculetin returned significantly higher values than fraxetin and coumarin (12.47 ± 0.97 vs. 7.53 ± 0.49 and 7.90 ± 0.69 respectively). All drugs show important antiplatelet activity. Naringin was the best antiplatelet compound, showing the greatest antiplatelet activity and the highest percentage binding of GPIIb/IIIa receptors. However, any of the compounds used could be used in the prevention of cardiovascular disease.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>27616636</pmid><doi>10.1016/j.vph.2016.09.002</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1537-1891
ispartof Vascular pharmacology, 2016-12, Vol.87, p.139-149
issn 1537-1891
1879-3649
language eng
recordid cdi_proquest_miscellaneous_1852655644
source MEDLINE; Elsevier ScienceDirect Journals
subjects Agglomeration
Antibodies
Blood coagulation
Blood platelets
Blood Platelets - drug effects
Blood Platelets - metabolism
Calcium
Calcium ionophores
Cardiovascular
Cardiovascular diseases
Cell interactions
Coumarin
Coumarins - pharmacology
Drugs
Endothelial cells
Female
Flavonoid
Flavonoids
Flavonoids - pharmacology
Flow Cytometry
Fluorescein
GPIIb/IIIa
Humans
In Vitro Techniques
Male
Naringenin
Pathogenesis
Peripheral blood
Platelet
Platelet aggregation
Platelet Aggregation - drug effects
Platelet Aggregation Inhibitors - pharmacology
Platelet Glycoprotein GPIIb-IIIa Complex - metabolism
Platelets
Polyphenols
Polyphenols - pharmacology
Receptors
Young Adult
title Antiplatelet activity of flavonoid and coumarin drugs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T03%3A16%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Antiplatelet%20activity%20of%20flavonoid%20and%20coumarin%20drugs&rft.jtitle=Vascular%20pharmacology&rft.au=Arna%C3%A9z,%20Cristina%20Zaragoz%C3%A1&rft.date=2016-12-01&rft.volume=87&rft.spage=139&rft.epage=149&rft.pages=139-149&rft.issn=1537-1891&rft.eissn=1879-3649&rft_id=info:doi/10.1016/j.vph.2016.09.002&rft_dat=%3Cproquest_cross%3E1852655644%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2078151534&rft_id=info:pmid/27616636&rft_els_id=S1537189116300180&rfr_iscdi=true