Antiplatelet activity of flavonoid and coumarin drugs
Abstract Polyphenols are used as phlebotonic drugs, but their mechanism of action remains unknown. Since platelet activity and platelet-endothelial cell interactions are involved in the pathogenesis of cardiovascular disease, this work examines whether different flavonoid and coumarin drugs are able...
Gespeichert in:
Veröffentlicht in: | Vascular pharmacology 2016-12, Vol.87, p.139-149 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 149 |
---|---|
container_issue | |
container_start_page | 139 |
container_title | Vascular pharmacology |
container_volume | 87 |
creator | Arnaéz, Cristina Zaragozá Sanz, Jorge Monserrat Ramiro, Carolina Mantecón Castillo, Lucinda Villaescusa García, Francisco Zaragozá de Mon Soto, Melchor Álvarez |
description | Abstract Polyphenols are used as phlebotonic drugs, but their mechanism of action remains unknown. Since platelet activity and platelet-endothelial cell interactions are involved in the pathogenesis of cardiovascular disease, this work examines whether different flavonoid and coumarin drugs are able to inhibit platelet aggregation. This specific case of coumarins, the antiplatelet effect is not linked with a possible interaction over blood coagulation since this effect only dicoumarols have it. The antiplatelet capacity of polyphenols was assayed using peripheral blood platelets from healthy controls. The distribution of the different platelets subsets was quantified by flow cytometry, using the calcium ionophore as a pro-aggregant. The number of GPIIb/IIIa receptors occupied by the drugs was assayed by flow cytometry using two CD61 surface fluorescein antibodies. All the polyphenols tested inhibited platelet aggregation. A percentage antiplatelet activity of 88.91 ± 7.98% was recorded for naringin, 48.43 ± 8.84% for naringenin, 53.83 ± 7.87% for esculetin, 54.65 ± 6.91% for fraxetin, and 25.75 ± 4.12% for coumarin. Naringin showed significantly greater percentage occupation of GPIIb/IIIa receptors than did naringenin (14.82 ± 0.81% vs. 3.90 ± 0.55%), and esculetin returned significantly higher values than fraxetin and coumarin (12.47 ± 0.97 vs. 7.53 ± 0.49 and 7.90 ± 0.69 respectively). All drugs show important antiplatelet activity. Naringin was the best antiplatelet compound, showing the greatest antiplatelet activity and the highest percentage binding of GPIIb/IIIa receptors. However, any of the compounds used could be used in the prevention of cardiovascular disease. |
doi_str_mv | 10.1016/j.vph.2016.09.002 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1852655644</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1537189116300180</els_id><sourcerecordid>1852655644</sourcerecordid><originalsourceid>FETCH-LOGICAL-c436t-e808a0ac77ab91df5f8ebbef99568ad464fa022f6f5bb248b4446ce07bb399a43</originalsourceid><addsrcrecordid>eNp9kcFKHTEUhoO0qFUfoJsy0E03M00ySSZBEERaFQQX1nVIMic217mT22Tmwn37ZrjqwoWrnMX3_-R8B6GvBDcEE_Fz1Ww3fxtaxgarBmN6gI6J7FTdCqY-lZm3XU2kIkfoS84rjImUQh2iI9oJIkQrjhG_HKewGcwEA0yVcVPYhmlXRV_5wWzjGENfmbGvXJzXJoWx6tP8lE_RZ2-GDGcv7wl6_P3rz9VNfXd_fXt1eVc71oqpBomlwcZ1nbGK9J57CdaCV4oLaXommDeYUi88t5YyaRljwgHurG2VMqw9QT_2vZsU_82QJ70O2cEwmBHinDWRnArOBVvQ7-_QVZzTWH6nKe4k4UXGQpE95VLMOYHXmxTKYjtNsF6c6pUuTvXiVGOli9OS-fbSPNs19G-JV4kFON8DUFRsAySdXYDRQR8SuEn3MXxYf_Eu7YYwBmeGZ9hBftuC6Ew11g_LUZebEtEuB8Xtf5IjmzI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2078151534</pqid></control><display><type>article</type><title>Antiplatelet activity of flavonoid and coumarin drugs</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Arnaéz, Cristina Zaragozá ; Sanz, Jorge Monserrat ; Ramiro, Carolina Mantecón ; Castillo, Lucinda Villaescusa ; García, Francisco Zaragozá ; de Mon Soto, Melchor Álvarez</creator><creatorcontrib>Arnaéz, Cristina Zaragozá ; Sanz, Jorge Monserrat ; Ramiro, Carolina Mantecón ; Castillo, Lucinda Villaescusa ; García, Francisco Zaragozá ; de Mon Soto, Melchor Álvarez</creatorcontrib><description>Abstract Polyphenols are used as phlebotonic drugs, but their mechanism of action remains unknown. Since platelet activity and platelet-endothelial cell interactions are involved in the pathogenesis of cardiovascular disease, this work examines whether different flavonoid and coumarin drugs are able to inhibit platelet aggregation. This specific case of coumarins, the antiplatelet effect is not linked with a possible interaction over blood coagulation since this effect only dicoumarols have it. The antiplatelet capacity of polyphenols was assayed using peripheral blood platelets from healthy controls. The distribution of the different platelets subsets was quantified by flow cytometry, using the calcium ionophore as a pro-aggregant. The number of GPIIb/IIIa receptors occupied by the drugs was assayed by flow cytometry using two CD61 surface fluorescein antibodies. All the polyphenols tested inhibited platelet aggregation. A percentage antiplatelet activity of 88.91 ± 7.98% was recorded for naringin, 48.43 ± 8.84% for naringenin, 53.83 ± 7.87% for esculetin, 54.65 ± 6.91% for fraxetin, and 25.75 ± 4.12% for coumarin. Naringin showed significantly greater percentage occupation of GPIIb/IIIa receptors than did naringenin (14.82 ± 0.81% vs. 3.90 ± 0.55%), and esculetin returned significantly higher values than fraxetin and coumarin (12.47 ± 0.97 vs. 7.53 ± 0.49 and 7.90 ± 0.69 respectively). All drugs show important antiplatelet activity. Naringin was the best antiplatelet compound, showing the greatest antiplatelet activity and the highest percentage binding of GPIIb/IIIa receptors. However, any of the compounds used could be used in the prevention of cardiovascular disease.</description><identifier>ISSN: 1537-1891</identifier><identifier>EISSN: 1879-3649</identifier><identifier>DOI: 10.1016/j.vph.2016.09.002</identifier><identifier>PMID: 27616636</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Agglomeration ; Antibodies ; Blood coagulation ; Blood platelets ; Blood Platelets - drug effects ; Blood Platelets - metabolism ; Calcium ; Calcium ionophores ; Cardiovascular ; Cardiovascular diseases ; Cell interactions ; Coumarin ; Coumarins - pharmacology ; Drugs ; Endothelial cells ; Female ; Flavonoid ; Flavonoids ; Flavonoids - pharmacology ; Flow Cytometry ; Fluorescein ; GPIIb/IIIa ; Humans ; In Vitro Techniques ; Male ; Naringenin ; Pathogenesis ; Peripheral blood ; Platelet ; Platelet aggregation ; Platelet Aggregation - drug effects ; Platelet Aggregation Inhibitors - pharmacology ; Platelet Glycoprotein GPIIb-IIIa Complex - metabolism ; Platelets ; Polyphenols ; Polyphenols - pharmacology ; Receptors ; Young Adult</subject><ispartof>Vascular pharmacology, 2016-12, Vol.87, p.139-149</ispartof><rights>2016 Elsevier Inc.</rights><rights>Copyright © 2016 Elsevier Inc. All rights reserved.</rights><rights>Copyright Elsevier Science Ltd. Dec 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c436t-e808a0ac77ab91df5f8ebbef99568ad464fa022f6f5bb248b4446ce07bb399a43</citedby><cites>FETCH-LOGICAL-c436t-e808a0ac77ab91df5f8ebbef99568ad464fa022f6f5bb248b4446ce07bb399a43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.vph.2016.09.002$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27616636$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Arnaéz, Cristina Zaragozá</creatorcontrib><creatorcontrib>Sanz, Jorge Monserrat</creatorcontrib><creatorcontrib>Ramiro, Carolina Mantecón</creatorcontrib><creatorcontrib>Castillo, Lucinda Villaescusa</creatorcontrib><creatorcontrib>García, Francisco Zaragozá</creatorcontrib><creatorcontrib>de Mon Soto, Melchor Álvarez</creatorcontrib><title>Antiplatelet activity of flavonoid and coumarin drugs</title><title>Vascular pharmacology</title><addtitle>Vascul Pharmacol</addtitle><description>Abstract Polyphenols are used as phlebotonic drugs, but their mechanism of action remains unknown. Since platelet activity and platelet-endothelial cell interactions are involved in the pathogenesis of cardiovascular disease, this work examines whether different flavonoid and coumarin drugs are able to inhibit platelet aggregation. This specific case of coumarins, the antiplatelet effect is not linked with a possible interaction over blood coagulation since this effect only dicoumarols have it. The antiplatelet capacity of polyphenols was assayed using peripheral blood platelets from healthy controls. The distribution of the different platelets subsets was quantified by flow cytometry, using the calcium ionophore as a pro-aggregant. The number of GPIIb/IIIa receptors occupied by the drugs was assayed by flow cytometry using two CD61 surface fluorescein antibodies. All the polyphenols tested inhibited platelet aggregation. A percentage antiplatelet activity of 88.91 ± 7.98% was recorded for naringin, 48.43 ± 8.84% for naringenin, 53.83 ± 7.87% for esculetin, 54.65 ± 6.91% for fraxetin, and 25.75 ± 4.12% for coumarin. Naringin showed significantly greater percentage occupation of GPIIb/IIIa receptors than did naringenin (14.82 ± 0.81% vs. 3.90 ± 0.55%), and esculetin returned significantly higher values than fraxetin and coumarin (12.47 ± 0.97 vs. 7.53 ± 0.49 and 7.90 ± 0.69 respectively). All drugs show important antiplatelet activity. Naringin was the best antiplatelet compound, showing the greatest antiplatelet activity and the highest percentage binding of GPIIb/IIIa receptors. However, any of the compounds used could be used in the prevention of cardiovascular disease.</description><subject>Agglomeration</subject><subject>Antibodies</subject><subject>Blood coagulation</subject><subject>Blood platelets</subject><subject>Blood Platelets - drug effects</subject><subject>Blood Platelets - metabolism</subject><subject>Calcium</subject><subject>Calcium ionophores</subject><subject>Cardiovascular</subject><subject>Cardiovascular diseases</subject><subject>Cell interactions</subject><subject>Coumarin</subject><subject>Coumarins - pharmacology</subject><subject>Drugs</subject><subject>Endothelial cells</subject><subject>Female</subject><subject>Flavonoid</subject><subject>Flavonoids</subject><subject>Flavonoids - pharmacology</subject><subject>Flow Cytometry</subject><subject>Fluorescein</subject><subject>GPIIb/IIIa</subject><subject>Humans</subject><subject>In Vitro Techniques</subject><subject>Male</subject><subject>Naringenin</subject><subject>Pathogenesis</subject><subject>Peripheral blood</subject><subject>Platelet</subject><subject>Platelet aggregation</subject><subject>Platelet Aggregation - drug effects</subject><subject>Platelet Aggregation Inhibitors - pharmacology</subject><subject>Platelet Glycoprotein GPIIb-IIIa Complex - metabolism</subject><subject>Platelets</subject><subject>Polyphenols</subject><subject>Polyphenols - pharmacology</subject><subject>Receptors</subject><subject>Young Adult</subject><issn>1537-1891</issn><issn>1879-3649</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kcFKHTEUhoO0qFUfoJsy0E03M00ySSZBEERaFQQX1nVIMic217mT22Tmwn37ZrjqwoWrnMX3_-R8B6GvBDcEE_Fz1Ww3fxtaxgarBmN6gI6J7FTdCqY-lZm3XU2kIkfoS84rjImUQh2iI9oJIkQrjhG_HKewGcwEA0yVcVPYhmlXRV_5wWzjGENfmbGvXJzXJoWx6tP8lE_RZ2-GDGcv7wl6_P3rz9VNfXd_fXt1eVc71oqpBomlwcZ1nbGK9J57CdaCV4oLaXommDeYUi88t5YyaRljwgHurG2VMqw9QT_2vZsU_82QJ70O2cEwmBHinDWRnArOBVvQ7-_QVZzTWH6nKe4k4UXGQpE95VLMOYHXmxTKYjtNsF6c6pUuTvXiVGOli9OS-fbSPNs19G-JV4kFON8DUFRsAySdXYDRQR8SuEn3MXxYf_Eu7YYwBmeGZ9hBftuC6Ew11g_LUZebEtEuB8Xtf5IjmzI</recordid><startdate>20161201</startdate><enddate>20161201</enddate><creator>Arnaéz, Cristina Zaragozá</creator><creator>Sanz, Jorge Monserrat</creator><creator>Ramiro, Carolina Mantecón</creator><creator>Castillo, Lucinda Villaescusa</creator><creator>García, Francisco Zaragozá</creator><creator>de Mon Soto, Melchor Álvarez</creator><general>Elsevier Inc</general><general>Elsevier Science Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7T5</scope><scope>7U7</scope><scope>C1K</scope><scope>H94</scope><scope>7X8</scope></search><sort><creationdate>20161201</creationdate><title>Antiplatelet activity of flavonoid and coumarin drugs</title><author>Arnaéz, Cristina Zaragozá ; Sanz, Jorge Monserrat ; Ramiro, Carolina Mantecón ; Castillo, Lucinda Villaescusa ; García, Francisco Zaragozá ; de Mon Soto, Melchor Álvarez</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c436t-e808a0ac77ab91df5f8ebbef99568ad464fa022f6f5bb248b4446ce07bb399a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Agglomeration</topic><topic>Antibodies</topic><topic>Blood coagulation</topic><topic>Blood platelets</topic><topic>Blood Platelets - drug effects</topic><topic>Blood Platelets - metabolism</topic><topic>Calcium</topic><topic>Calcium ionophores</topic><topic>Cardiovascular</topic><topic>Cardiovascular diseases</topic><topic>Cell interactions</topic><topic>Coumarin</topic><topic>Coumarins - pharmacology</topic><topic>Drugs</topic><topic>Endothelial cells</topic><topic>Female</topic><topic>Flavonoid</topic><topic>Flavonoids</topic><topic>Flavonoids - pharmacology</topic><topic>Flow Cytometry</topic><topic>Fluorescein</topic><topic>GPIIb/IIIa</topic><topic>Humans</topic><topic>In Vitro Techniques</topic><topic>Male</topic><topic>Naringenin</topic><topic>Pathogenesis</topic><topic>Peripheral blood</topic><topic>Platelet</topic><topic>Platelet aggregation</topic><topic>Platelet Aggregation - drug effects</topic><topic>Platelet Aggregation Inhibitors - pharmacology</topic><topic>Platelet Glycoprotein GPIIb-IIIa Complex - metabolism</topic><topic>Platelets</topic><topic>Polyphenols</topic><topic>Polyphenols - pharmacology</topic><topic>Receptors</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arnaéz, Cristina Zaragozá</creatorcontrib><creatorcontrib>Sanz, Jorge Monserrat</creatorcontrib><creatorcontrib>Ramiro, Carolina Mantecón</creatorcontrib><creatorcontrib>Castillo, Lucinda Villaescusa</creatorcontrib><creatorcontrib>García, Francisco Zaragozá</creatorcontrib><creatorcontrib>de Mon Soto, Melchor Álvarez</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Immunology Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Vascular pharmacology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arnaéz, Cristina Zaragozá</au><au>Sanz, Jorge Monserrat</au><au>Ramiro, Carolina Mantecón</au><au>Castillo, Lucinda Villaescusa</au><au>García, Francisco Zaragozá</au><au>de Mon Soto, Melchor Álvarez</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Antiplatelet activity of flavonoid and coumarin drugs</atitle><jtitle>Vascular pharmacology</jtitle><addtitle>Vascul Pharmacol</addtitle><date>2016-12-01</date><risdate>2016</risdate><volume>87</volume><spage>139</spage><epage>149</epage><pages>139-149</pages><issn>1537-1891</issn><eissn>1879-3649</eissn><abstract>Abstract Polyphenols are used as phlebotonic drugs, but their mechanism of action remains unknown. Since platelet activity and platelet-endothelial cell interactions are involved in the pathogenesis of cardiovascular disease, this work examines whether different flavonoid and coumarin drugs are able to inhibit platelet aggregation. This specific case of coumarins, the antiplatelet effect is not linked with a possible interaction over blood coagulation since this effect only dicoumarols have it. The antiplatelet capacity of polyphenols was assayed using peripheral blood platelets from healthy controls. The distribution of the different platelets subsets was quantified by flow cytometry, using the calcium ionophore as a pro-aggregant. The number of GPIIb/IIIa receptors occupied by the drugs was assayed by flow cytometry using two CD61 surface fluorescein antibodies. All the polyphenols tested inhibited platelet aggregation. A percentage antiplatelet activity of 88.91 ± 7.98% was recorded for naringin, 48.43 ± 8.84% for naringenin, 53.83 ± 7.87% for esculetin, 54.65 ± 6.91% for fraxetin, and 25.75 ± 4.12% for coumarin. Naringin showed significantly greater percentage occupation of GPIIb/IIIa receptors than did naringenin (14.82 ± 0.81% vs. 3.90 ± 0.55%), and esculetin returned significantly higher values than fraxetin and coumarin (12.47 ± 0.97 vs. 7.53 ± 0.49 and 7.90 ± 0.69 respectively). All drugs show important antiplatelet activity. Naringin was the best antiplatelet compound, showing the greatest antiplatelet activity and the highest percentage binding of GPIIb/IIIa receptors. However, any of the compounds used could be used in the prevention of cardiovascular disease.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>27616636</pmid><doi>10.1016/j.vph.2016.09.002</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1537-1891 |
ispartof | Vascular pharmacology, 2016-12, Vol.87, p.139-149 |
issn | 1537-1891 1879-3649 |
language | eng |
recordid | cdi_proquest_miscellaneous_1852655644 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Agglomeration Antibodies Blood coagulation Blood platelets Blood Platelets - drug effects Blood Platelets - metabolism Calcium Calcium ionophores Cardiovascular Cardiovascular diseases Cell interactions Coumarin Coumarins - pharmacology Drugs Endothelial cells Female Flavonoid Flavonoids Flavonoids - pharmacology Flow Cytometry Fluorescein GPIIb/IIIa Humans In Vitro Techniques Male Naringenin Pathogenesis Peripheral blood Platelet Platelet aggregation Platelet Aggregation - drug effects Platelet Aggregation Inhibitors - pharmacology Platelet Glycoprotein GPIIb-IIIa Complex - metabolism Platelets Polyphenols Polyphenols - pharmacology Receptors Young Adult |
title | Antiplatelet activity of flavonoid and coumarin drugs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T03%3A16%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Antiplatelet%20activity%20of%20flavonoid%20and%20coumarin%20drugs&rft.jtitle=Vascular%20pharmacology&rft.au=Arna%C3%A9z,%20Cristina%20Zaragoz%C3%A1&rft.date=2016-12-01&rft.volume=87&rft.spage=139&rft.epage=149&rft.pages=139-149&rft.issn=1537-1891&rft.eissn=1879-3649&rft_id=info:doi/10.1016/j.vph.2016.09.002&rft_dat=%3Cproquest_cross%3E1852655644%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2078151534&rft_id=info:pmid/27616636&rft_els_id=S1537189116300180&rfr_iscdi=true |