On-line prediction of sodium content in vacuum packed dry-cured ham slices by non-invasive near infrared spectroscopy

In the present study, non-invasive near infrared spectroscopy (NIRS) was evaluated as a potential on-line analytical technique to predict the sodium content in dry-cured ham slices. Samples of 310 packages were scanned by applying a remote fibre-optic probe to the surface of the slices, at different...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Meat science 2017-04, Vol.126, p.29-35
Hauptverfasser: Campos, M. Isabel, Mussons, M. Luisa, Antolin, Gregorio, Debán, Luis, Pardo, Rafael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 35
container_issue
container_start_page 29
container_title Meat science
container_volume 126
creator Campos, M. Isabel
Mussons, M. Luisa
Antolin, Gregorio
Debán, Luis
Pardo, Rafael
description In the present study, non-invasive near infrared spectroscopy (NIRS) was evaluated as a potential on-line analytical technique to predict the sodium content in dry-cured ham slices. Samples of 310 packages were scanned by applying a remote fibre-optic probe to the surface of the slices, at different temperatures, with no previous manipulation. The sodium content of the meat samples was determined by a reference method based on Inductively Coupled Plasma Atomic Emission Spectrophotometry (ICP-AES) after chemical digestion. Partial least squares (PLS) regression was used as a chemometrics method to perform the calibrations. The models yielded acceptable results with cross validation correlation coefficients (R2CV) determined 86.2–90.2%. The prediction capacity reached in the external validation was 3.63, with a standard prediction error of 0.12% Na. These results show that NIR measurements could be implemented on the packaging line of dry-cured ham slices to provide accurate and relevant information about the sodium content of each packaged products.
doi_str_mv 10.1016/j.meatsci.2016.12.005
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1851693416</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0309174016306313</els_id><sourcerecordid>1851693416</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-1202fb3c37600e3bc5856a72bd9f95decebd4d6518343d6d50d82d0c4a74c9143</originalsourceid><addsrcrecordid>eNqFkE1v1DAQhi0EotvCTwD5yCXL2I7zcUKoKlCpUi9wtpzxRHhJ7GAnK-2_x6tduHIaefS8M-OHsXcC9gJE8_Gwn8muGf1eludeyD2AfsF2omtVVQvVvWQ7UNBXoq3hht3mfAAAoWT3mt3IDkC2ut-x7TlUkw_El0TO4-pj4HHkOTq_zRxjWCms3Ad-tLiVzmLxFznu0qnCrUT4TzvzPHmkzIcTDzFUPhxt9kfigWwq0THZM5gXwjXFjHE5vWGvRjtlenutd-zHl4fv99-qp-evj_efnypUjV4rIUGOg0LVNgCkBtSdbmwrB9ePvXaENLjaNVp0qlaucRpcJx1gbdsae1GrO_bhMndJ8fdGeTWzz0jTZAPFLRvRadH0qhZNQfUFxXJjTjSaJfnZppMRYM7GzcFcjZuzcSOkKcZL7v11xTbM5P6l_iouwKcLQOWjR0_JlBEUsOhOxYhx0f9nxR88eZZw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1851693416</pqid></control><display><type>article</type><title>On-line prediction of sodium content in vacuum packed dry-cured ham slices by non-invasive near infrared spectroscopy</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Campos, M. Isabel ; Mussons, M. Luisa ; Antolin, Gregorio ; Debán, Luis ; Pardo, Rafael</creator><creatorcontrib>Campos, M. Isabel ; Mussons, M. Luisa ; Antolin, Gregorio ; Debán, Luis ; Pardo, Rafael</creatorcontrib><description>In the present study, non-invasive near infrared spectroscopy (NIRS) was evaluated as a potential on-line analytical technique to predict the sodium content in dry-cured ham slices. Samples of 310 packages were scanned by applying a remote fibre-optic probe to the surface of the slices, at different temperatures, with no previous manipulation. The sodium content of the meat samples was determined by a reference method based on Inductively Coupled Plasma Atomic Emission Spectrophotometry (ICP-AES) after chemical digestion. Partial least squares (PLS) regression was used as a chemometrics method to perform the calibrations. The models yielded acceptable results with cross validation correlation coefficients (R2CV) determined 86.2–90.2%. The prediction capacity reached in the external validation was 3.63, with a standard prediction error of 0.12% Na. These results show that NIR measurements could be implemented on the packaging line of dry-cured ham slices to provide accurate and relevant information about the sodium content of each packaged products.</description><identifier>ISSN: 0309-1740</identifier><identifier>EISSN: 1873-4138</identifier><identifier>DOI: 10.1016/j.meatsci.2016.12.005</identifier><identifier>PMID: 28002759</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Animals ; Calibration ; Dry-cured ham ; Food Handling ; Least-Squares Analysis ; Multivariate Analysis ; NIR spectroscopy ; On-line prediction ; Principal Component Analysis ; Red Meat - analysis ; Reproducibility of Results ; Sodium - analysis ; Sodium content ; Spectroscopy, Near-Infrared ; Swine ; Vacuum</subject><ispartof>Meat science, 2017-04, Vol.126, p.29-35</ispartof><rights>2016 Elsevier Ltd</rights><rights>Copyright © 2016 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c365t-1202fb3c37600e3bc5856a72bd9f95decebd4d6518343d6d50d82d0c4a74c9143</citedby><cites>FETCH-LOGICAL-c365t-1202fb3c37600e3bc5856a72bd9f95decebd4d6518343d6d50d82d0c4a74c9143</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0309174016306313$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28002759$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Campos, M. Isabel</creatorcontrib><creatorcontrib>Mussons, M. Luisa</creatorcontrib><creatorcontrib>Antolin, Gregorio</creatorcontrib><creatorcontrib>Debán, Luis</creatorcontrib><creatorcontrib>Pardo, Rafael</creatorcontrib><title>On-line prediction of sodium content in vacuum packed dry-cured ham slices by non-invasive near infrared spectroscopy</title><title>Meat science</title><addtitle>Meat Sci</addtitle><description>In the present study, non-invasive near infrared spectroscopy (NIRS) was evaluated as a potential on-line analytical technique to predict the sodium content in dry-cured ham slices. Samples of 310 packages were scanned by applying a remote fibre-optic probe to the surface of the slices, at different temperatures, with no previous manipulation. The sodium content of the meat samples was determined by a reference method based on Inductively Coupled Plasma Atomic Emission Spectrophotometry (ICP-AES) after chemical digestion. Partial least squares (PLS) regression was used as a chemometrics method to perform the calibrations. The models yielded acceptable results with cross validation correlation coefficients (R2CV) determined 86.2–90.2%. The prediction capacity reached in the external validation was 3.63, with a standard prediction error of 0.12% Na. These results show that NIR measurements could be implemented on the packaging line of dry-cured ham slices to provide accurate and relevant information about the sodium content of each packaged products.</description><subject>Animals</subject><subject>Calibration</subject><subject>Dry-cured ham</subject><subject>Food Handling</subject><subject>Least-Squares Analysis</subject><subject>Multivariate Analysis</subject><subject>NIR spectroscopy</subject><subject>On-line prediction</subject><subject>Principal Component Analysis</subject><subject>Red Meat - analysis</subject><subject>Reproducibility of Results</subject><subject>Sodium - analysis</subject><subject>Sodium content</subject><subject>Spectroscopy, Near-Infrared</subject><subject>Swine</subject><subject>Vacuum</subject><issn>0309-1740</issn><issn>1873-4138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE1v1DAQhi0EotvCTwD5yCXL2I7zcUKoKlCpUi9wtpzxRHhJ7GAnK-2_x6tduHIaefS8M-OHsXcC9gJE8_Gwn8muGf1eludeyD2AfsF2omtVVQvVvWQ7UNBXoq3hht3mfAAAoWT3mt3IDkC2ut-x7TlUkw_El0TO4-pj4HHkOTq_zRxjWCms3Ad-tLiVzmLxFznu0qnCrUT4TzvzPHmkzIcTDzFUPhxt9kfigWwq0THZM5gXwjXFjHE5vWGvRjtlenutd-zHl4fv99-qp-evj_efnypUjV4rIUGOg0LVNgCkBtSdbmwrB9ePvXaENLjaNVp0qlaucRpcJx1gbdsae1GrO_bhMndJ8fdGeTWzz0jTZAPFLRvRadH0qhZNQfUFxXJjTjSaJfnZppMRYM7GzcFcjZuzcSOkKcZL7v11xTbM5P6l_iouwKcLQOWjR0_JlBEUsOhOxYhx0f9nxR88eZZw</recordid><startdate>201704</startdate><enddate>201704</enddate><creator>Campos, M. Isabel</creator><creator>Mussons, M. Luisa</creator><creator>Antolin, Gregorio</creator><creator>Debán, Luis</creator><creator>Pardo, Rafael</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201704</creationdate><title>On-line prediction of sodium content in vacuum packed dry-cured ham slices by non-invasive near infrared spectroscopy</title><author>Campos, M. Isabel ; Mussons, M. Luisa ; Antolin, Gregorio ; Debán, Luis ; Pardo, Rafael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-1202fb3c37600e3bc5856a72bd9f95decebd4d6518343d6d50d82d0c4a74c9143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Animals</topic><topic>Calibration</topic><topic>Dry-cured ham</topic><topic>Food Handling</topic><topic>Least-Squares Analysis</topic><topic>Multivariate Analysis</topic><topic>NIR spectroscopy</topic><topic>On-line prediction</topic><topic>Principal Component Analysis</topic><topic>Red Meat - analysis</topic><topic>Reproducibility of Results</topic><topic>Sodium - analysis</topic><topic>Sodium content</topic><topic>Spectroscopy, Near-Infrared</topic><topic>Swine</topic><topic>Vacuum</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Campos, M. Isabel</creatorcontrib><creatorcontrib>Mussons, M. Luisa</creatorcontrib><creatorcontrib>Antolin, Gregorio</creatorcontrib><creatorcontrib>Debán, Luis</creatorcontrib><creatorcontrib>Pardo, Rafael</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Meat science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Campos, M. Isabel</au><au>Mussons, M. Luisa</au><au>Antolin, Gregorio</au><au>Debán, Luis</au><au>Pardo, Rafael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On-line prediction of sodium content in vacuum packed dry-cured ham slices by non-invasive near infrared spectroscopy</atitle><jtitle>Meat science</jtitle><addtitle>Meat Sci</addtitle><date>2017-04</date><risdate>2017</risdate><volume>126</volume><spage>29</spage><epage>35</epage><pages>29-35</pages><issn>0309-1740</issn><eissn>1873-4138</eissn><abstract>In the present study, non-invasive near infrared spectroscopy (NIRS) was evaluated as a potential on-line analytical technique to predict the sodium content in dry-cured ham slices. Samples of 310 packages were scanned by applying a remote fibre-optic probe to the surface of the slices, at different temperatures, with no previous manipulation. The sodium content of the meat samples was determined by a reference method based on Inductively Coupled Plasma Atomic Emission Spectrophotometry (ICP-AES) after chemical digestion. Partial least squares (PLS) regression was used as a chemometrics method to perform the calibrations. The models yielded acceptable results with cross validation correlation coefficients (R2CV) determined 86.2–90.2%. The prediction capacity reached in the external validation was 3.63, with a standard prediction error of 0.12% Na. These results show that NIR measurements could be implemented on the packaging line of dry-cured ham slices to provide accurate and relevant information about the sodium content of each packaged products.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>28002759</pmid><doi>10.1016/j.meatsci.2016.12.005</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0309-1740
ispartof Meat science, 2017-04, Vol.126, p.29-35
issn 0309-1740
1873-4138
language eng
recordid cdi_proquest_miscellaneous_1851693416
source MEDLINE; Elsevier ScienceDirect Journals
subjects Animals
Calibration
Dry-cured ham
Food Handling
Least-Squares Analysis
Multivariate Analysis
NIR spectroscopy
On-line prediction
Principal Component Analysis
Red Meat - analysis
Reproducibility of Results
Sodium - analysis
Sodium content
Spectroscopy, Near-Infrared
Swine
Vacuum
title On-line prediction of sodium content in vacuum packed dry-cured ham slices by non-invasive near infrared spectroscopy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T19%3A55%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On-line%20prediction%20of%20sodium%20content%20in%20vacuum%20packed%20dry-cured%20ham%20slices%20by%20non-invasive%20near%20infrared%20spectroscopy&rft.jtitle=Meat%20science&rft.au=Campos,%20M.%20Isabel&rft.date=2017-04&rft.volume=126&rft.spage=29&rft.epage=35&rft.pages=29-35&rft.issn=0309-1740&rft.eissn=1873-4138&rft_id=info:doi/10.1016/j.meatsci.2016.12.005&rft_dat=%3Cproquest_cross%3E1851693416%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1851693416&rft_id=info:pmid/28002759&rft_els_id=S0309174016306313&rfr_iscdi=true