Gallium-Doped Li7La3Zr2O12 Garnet-Type Electrolytes with High Lithium-Ion Conductivity

Owing to their high conductivity, crystalline Li7–3x Ga x La3Zr2O12 garnets are promising electrolytes for all-solid-state lithium-ion batteries. Herein, the influence of Ga doping on the phase, lithium-ion distribution, and conductivity of Li7–3x Ga x La3Zr2O12 garnets is investigated, with the det...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2017-01, Vol.9 (2), p.1542-1552
Hauptverfasser: Wu, Jian-Fang, Chen, En-Yi, Yu, Yao, Liu, Lin, Wu, Yue, Pang, Wei Kong, Peterson, Vanessa K, Guo, Xin
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1552
container_issue 2
container_start_page 1542
container_title ACS applied materials & interfaces
container_volume 9
creator Wu, Jian-Fang
Chen, En-Yi
Yu, Yao
Liu, Lin
Wu, Yue
Pang, Wei Kong
Peterson, Vanessa K
Guo, Xin
description Owing to their high conductivity, crystalline Li7–3x Ga x La3Zr2O12 garnets are promising electrolytes for all-solid-state lithium-ion batteries. Herein, the influence of Ga doping on the phase, lithium-ion distribution, and conductivity of Li7–3x Ga x La3Zr2O12 garnets is investigated, with the determined concentration and mobility of lithium ions shedding light on the origin of the high conductivity of Li7–3x Ga x La3Zr2O12. When the Ga concentration exceeds 0.20 Ga per formula unit, the garnet-type material is found to assume a cubic structure, but lower Ga concentrations result in the coexistence of cubic and tetragonal phases. Most lithium within Li7–3x Ga x La3Zr2O12 is found to reside at the octahedral 96h site, away from the central octahedral 48g site, while the remaining lithium resides at the tetrahedral 24d site. Such kind of lithium distribution leads to high lithium-ion mobility, which is the origin of the high conductivity; the highest lithium-ion conductivity of 1.46 mS/cm at 25 °C is found to be achieved for Li7–3x Ga x La3Zr2O12 at x = 0.25. Additionally, there are two lithium-ion migration pathways in the Li7–3x Ga x La3Zr2O12 garnets: 96h-96h and 24d-96h-24d, but the lithium ions transporting through the 96h-96h pathway determine the overall conductivity.
doi_str_mv 10.1021/acsami.6b13902
format Article
fullrecord <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_1851691879</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1851691879</sourcerecordid><originalsourceid>FETCH-LOGICAL-a263t-421b129a819ece352ba72a86646207bde93d46340a25dbfcbcab32adab55d1283</originalsourceid><addsrcrecordid>eNo9kDFPwzAQhS0EEqWwMmdESCn22XHiEZXSIkXqUhhYonPiUlduXGIH1H9PqlZM94bvPZ0-Qu4ZnTAK7AnrgDs7kZpxReGCjJgSIi0gg8v_LMQ1uQlhS6nkQLMR-Zijc7bfpS9-b5qktHmJ_LODJYNkjl1rYro67E0yc6aOnXeHaELya-MmWdivzcDHzbH95ttk6tumr6P9sfFwS67W6IK5O98xeX-draaLtFzO36bPZYogeUwFMM1AYcGUqQ3PQGMOWEgpJNBcN0bxRkguKELW6HWta9QcsEGdZQ2Dgo_Jw2l33_nv3oRY7WyojXPYGt-HihUZk4oVuRrQxxM6eKq2vu_a4bGK0eoorzrJq87y-B-al2Lj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1851691879</pqid></control><display><type>article</type><title>Gallium-Doped Li7La3Zr2O12 Garnet-Type Electrolytes with High Lithium-Ion Conductivity</title><source>ACS Publications</source><creator>Wu, Jian-Fang ; Chen, En-Yi ; Yu, Yao ; Liu, Lin ; Wu, Yue ; Pang, Wei Kong ; Peterson, Vanessa K ; Guo, Xin</creator><creatorcontrib>Wu, Jian-Fang ; Chen, En-Yi ; Yu, Yao ; Liu, Lin ; Wu, Yue ; Pang, Wei Kong ; Peterson, Vanessa K ; Guo, Xin</creatorcontrib><description>Owing to their high conductivity, crystalline Li7–3x Ga x La3Zr2O12 garnets are promising electrolytes for all-solid-state lithium-ion batteries. Herein, the influence of Ga doping on the phase, lithium-ion distribution, and conductivity of Li7–3x Ga x La3Zr2O12 garnets is investigated, with the determined concentration and mobility of lithium ions shedding light on the origin of the high conductivity of Li7–3x Ga x La3Zr2O12. When the Ga concentration exceeds 0.20 Ga per formula unit, the garnet-type material is found to assume a cubic structure, but lower Ga concentrations result in the coexistence of cubic and tetragonal phases. Most lithium within Li7–3x Ga x La3Zr2O12 is found to reside at the octahedral 96h site, away from the central octahedral 48g site, while the remaining lithium resides at the tetrahedral 24d site. Such kind of lithium distribution leads to high lithium-ion mobility, which is the origin of the high conductivity; the highest lithium-ion conductivity of 1.46 mS/cm at 25 °C is found to be achieved for Li7–3x Ga x La3Zr2O12 at x = 0.25. Additionally, there are two lithium-ion migration pathways in the Li7–3x Ga x La3Zr2O12 garnets: 96h-96h and 24d-96h-24d, but the lithium ions transporting through the 96h-96h pathway determine the overall conductivity.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.6b13902</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS applied materials &amp; interfaces, 2017-01, Vol.9 (2), p.1542-1552</ispartof><rights>Copyright © 2016 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-1546-8119</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.6b13902$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.6b13902$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,781,785,27081,27929,27930,56743,56793</link.rule.ids></links><search><creatorcontrib>Wu, Jian-Fang</creatorcontrib><creatorcontrib>Chen, En-Yi</creatorcontrib><creatorcontrib>Yu, Yao</creatorcontrib><creatorcontrib>Liu, Lin</creatorcontrib><creatorcontrib>Wu, Yue</creatorcontrib><creatorcontrib>Pang, Wei Kong</creatorcontrib><creatorcontrib>Peterson, Vanessa K</creatorcontrib><creatorcontrib>Guo, Xin</creatorcontrib><title>Gallium-Doped Li7La3Zr2O12 Garnet-Type Electrolytes with High Lithium-Ion Conductivity</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Owing to their high conductivity, crystalline Li7–3x Ga x La3Zr2O12 garnets are promising electrolytes for all-solid-state lithium-ion batteries. Herein, the influence of Ga doping on the phase, lithium-ion distribution, and conductivity of Li7–3x Ga x La3Zr2O12 garnets is investigated, with the determined concentration and mobility of lithium ions shedding light on the origin of the high conductivity of Li7–3x Ga x La3Zr2O12. When the Ga concentration exceeds 0.20 Ga per formula unit, the garnet-type material is found to assume a cubic structure, but lower Ga concentrations result in the coexistence of cubic and tetragonal phases. Most lithium within Li7–3x Ga x La3Zr2O12 is found to reside at the octahedral 96h site, away from the central octahedral 48g site, while the remaining lithium resides at the tetrahedral 24d site. Such kind of lithium distribution leads to high lithium-ion mobility, which is the origin of the high conductivity; the highest lithium-ion conductivity of 1.46 mS/cm at 25 °C is found to be achieved for Li7–3x Ga x La3Zr2O12 at x = 0.25. Additionally, there are two lithium-ion migration pathways in the Li7–3x Ga x La3Zr2O12 garnets: 96h-96h and 24d-96h-24d, but the lithium ions transporting through the 96h-96h pathway determine the overall conductivity.</description><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNo9kDFPwzAQhS0EEqWwMmdESCn22XHiEZXSIkXqUhhYonPiUlduXGIH1H9PqlZM94bvPZ0-Qu4ZnTAK7AnrgDs7kZpxReGCjJgSIi0gg8v_LMQ1uQlhS6nkQLMR-Zijc7bfpS9-b5qktHmJ_LODJYNkjl1rYro67E0yc6aOnXeHaELya-MmWdivzcDHzbH95ttk6tumr6P9sfFwS67W6IK5O98xeX-draaLtFzO36bPZYogeUwFMM1AYcGUqQ3PQGMOWEgpJNBcN0bxRkguKELW6HWta9QcsEGdZQ2Dgo_Jw2l33_nv3oRY7WyojXPYGt-HihUZk4oVuRrQxxM6eKq2vu_a4bGK0eoorzrJq87y-B-al2Lj</recordid><startdate>20170118</startdate><enddate>20170118</enddate><creator>Wu, Jian-Fang</creator><creator>Chen, En-Yi</creator><creator>Yu, Yao</creator><creator>Liu, Lin</creator><creator>Wu, Yue</creator><creator>Pang, Wei Kong</creator><creator>Peterson, Vanessa K</creator><creator>Guo, Xin</creator><general>American Chemical Society</general><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1546-8119</orcidid></search><sort><creationdate>20170118</creationdate><title>Gallium-Doped Li7La3Zr2O12 Garnet-Type Electrolytes with High Lithium-Ion Conductivity</title><author>Wu, Jian-Fang ; Chen, En-Yi ; Yu, Yao ; Liu, Lin ; Wu, Yue ; Pang, Wei Kong ; Peterson, Vanessa K ; Guo, Xin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a263t-421b129a819ece352ba72a86646207bde93d46340a25dbfcbcab32adab55d1283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Jian-Fang</creatorcontrib><creatorcontrib>Chen, En-Yi</creatorcontrib><creatorcontrib>Yu, Yao</creatorcontrib><creatorcontrib>Liu, Lin</creatorcontrib><creatorcontrib>Wu, Yue</creatorcontrib><creatorcontrib>Pang, Wei Kong</creatorcontrib><creatorcontrib>Peterson, Vanessa K</creatorcontrib><creatorcontrib>Guo, Xin</creatorcontrib><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Jian-Fang</au><au>Chen, En-Yi</au><au>Yu, Yao</au><au>Liu, Lin</au><au>Wu, Yue</au><au>Pang, Wei Kong</au><au>Peterson, Vanessa K</au><au>Guo, Xin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gallium-Doped Li7La3Zr2O12 Garnet-Type Electrolytes with High Lithium-Ion Conductivity</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2017-01-18</date><risdate>2017</risdate><volume>9</volume><issue>2</issue><spage>1542</spage><epage>1552</epage><pages>1542-1552</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Owing to their high conductivity, crystalline Li7–3x Ga x La3Zr2O12 garnets are promising electrolytes for all-solid-state lithium-ion batteries. Herein, the influence of Ga doping on the phase, lithium-ion distribution, and conductivity of Li7–3x Ga x La3Zr2O12 garnets is investigated, with the determined concentration and mobility of lithium ions shedding light on the origin of the high conductivity of Li7–3x Ga x La3Zr2O12. When the Ga concentration exceeds 0.20 Ga per formula unit, the garnet-type material is found to assume a cubic structure, but lower Ga concentrations result in the coexistence of cubic and tetragonal phases. Most lithium within Li7–3x Ga x La3Zr2O12 is found to reside at the octahedral 96h site, away from the central octahedral 48g site, while the remaining lithium resides at the tetrahedral 24d site. Such kind of lithium distribution leads to high lithium-ion mobility, which is the origin of the high conductivity; the highest lithium-ion conductivity of 1.46 mS/cm at 25 °C is found to be achieved for Li7–3x Ga x La3Zr2O12 at x = 0.25. Additionally, there are two lithium-ion migration pathways in the Li7–3x Ga x La3Zr2O12 garnets: 96h-96h and 24d-96h-24d, but the lithium ions transporting through the 96h-96h pathway determine the overall conductivity.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsami.6b13902</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-1546-8119</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2017-01, Vol.9 (2), p.1542-1552
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_1851691879
source ACS Publications
title Gallium-Doped Li7La3Zr2O12 Garnet-Type Electrolytes with High Lithium-Ion Conductivity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T05%3A06%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gallium-Doped%20Li7La3Zr2O12%20Garnet-Type%20Electrolytes%20with%20High%20Lithium-Ion%20Conductivity&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Wu,%20Jian-Fang&rft.date=2017-01-18&rft.volume=9&rft.issue=2&rft.spage=1542&rft.epage=1552&rft.pages=1542-1552&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.6b13902&rft_dat=%3Cproquest_acs_j%3E1851691879%3C/proquest_acs_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1851691879&rft_id=info:pmid/&rfr_iscdi=true