Long-Term Stable Adhesion for Conducting Polymers in Biomedical Applications: IrOx and Nanostructured Platinum Solve the Chronic Challenge

Conducting polymers (CPs) have frequently been described as outstanding coating materials for neural microelectrodes, providing significantly reduced impedance or higher charge injection compared to pure metals. Usability has until now, however, been limited by poor adhesion of polymers like poly­(3...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2017-01, Vol.9 (1), p.189-197
Hauptverfasser: Boehler, Christian, Oberueber, Felix, Schlabach, Sabine, Stieglitz, Thomas, Asplund, Maria
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 197
container_issue 1
container_start_page 189
container_title ACS applied materials & interfaces
container_volume 9
creator Boehler, Christian
Oberueber, Felix
Schlabach, Sabine
Stieglitz, Thomas
Asplund, Maria
description Conducting polymers (CPs) have frequently been described as outstanding coating materials for neural microelectrodes, providing significantly reduced impedance or higher charge injection compared to pure metals. Usability has until now, however, been limited by poor adhesion of polymers like poly­(3,4-ethylenedioxythiophene) (PEDOT) to metallic substrates, ultimately precluding long-term applications. The aim of this study was to overcome this weakness of CPs by introducing two novel adhesion improvement strategies that can easily be integrated with standard microelectrode fabrication processes. Iridium Oxide (IrOx) demonstrated exceptional stability for PEDOT coatings, resulting in polymer survival over 10 000 redox cycles and 110 days under accelerated aging conditions at 60 °C. Nanostructured Pt was furthermore introduced as a purely mechanical adhesion promoter providing 10-fold adhesion improvement compared to smooth Pt substrates by simply altering the morphology of Pt. This layer can be realized in a very simple process that is compatible with any electrode design, turning nanostructured Pt into a universal adhesion layer for CP coatings. By the introduction of these adhesion-promoting strategies, the weakness of CP-based neural probes can ultimately be eliminated and true long-term stable use of PEDOT on neural probes will be possible in future electrode generations.
doi_str_mv 10.1021/acsami.6b13468
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1851690703</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1851690703</sourcerecordid><originalsourceid>FETCH-LOGICAL-a370t-cc96aea53b367516000a86243de1433f093168fff6607a51ab3f3a9e6fc4b4ab3</originalsourceid><addsrcrecordid>eNp1kE1r3DAQhkVpaT6aa45Bx1LwVrJk2e5tszQfsDSBJmczlke7CrK0lezS_IX-6qjsJreeZgTP-4p5CDnnbMFZyb-CTjDaheq5kKp5R455K2XRlFX5_m2X8oicpPTEmBIlqz6So7JuhaqkOiZ_18FvigeMI_05Qe-QLoctJhs8NSHSVfDDrCfrN_Q-uOcRY6LW00sbRhysBkeXu53Ly5QT6Ru9jXd_KPiB_gAf0hRzdo440HuXCT_nT4L7jXTaIl1tY_BW5wnOod_gJ_LBgEt4dpin5PHq-8PqpljfXd-ulusCRM2mQutWAUIleqHqiivGGDSqlGJALoUwrBVcNcYYpVgNFYdeGAEtKqNlL_PrlHze9-5i-DVjmrrRJo3Ogccwp443ubVlNRMZXexRHUNKEU23i3aE-Nxx1v3z3-39dwf_OXBx6J77bOgNfxWegS97IAe7pzBHn0_9X9sLnQKR1Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1851690703</pqid></control><display><type>article</type><title>Long-Term Stable Adhesion for Conducting Polymers in Biomedical Applications: IrOx and Nanostructured Platinum Solve the Chronic Challenge</title><source>MEDLINE</source><source>ACS Publications</source><creator>Boehler, Christian ; Oberueber, Felix ; Schlabach, Sabine ; Stieglitz, Thomas ; Asplund, Maria</creator><creatorcontrib>Boehler, Christian ; Oberueber, Felix ; Schlabach, Sabine ; Stieglitz, Thomas ; Asplund, Maria</creatorcontrib><description>Conducting polymers (CPs) have frequently been described as outstanding coating materials for neural microelectrodes, providing significantly reduced impedance or higher charge injection compared to pure metals. Usability has until now, however, been limited by poor adhesion of polymers like poly­(3,4-ethylenedioxythiophene) (PEDOT) to metallic substrates, ultimately precluding long-term applications. The aim of this study was to overcome this weakness of CPs by introducing two novel adhesion improvement strategies that can easily be integrated with standard microelectrode fabrication processes. Iridium Oxide (IrOx) demonstrated exceptional stability for PEDOT coatings, resulting in polymer survival over 10 000 redox cycles and 110 days under accelerated aging conditions at 60 °C. Nanostructured Pt was furthermore introduced as a purely mechanical adhesion promoter providing 10-fold adhesion improvement compared to smooth Pt substrates by simply altering the morphology of Pt. This layer can be realized in a very simple process that is compatible with any electrode design, turning nanostructured Pt into a universal adhesion layer for CP coatings. By the introduction of these adhesion-promoting strategies, the weakness of CP-based neural probes can ultimately be eliminated and true long-term stable use of PEDOT on neural probes will be possible in future electrode generations.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.6b13468</identifier><identifier>PMID: 27936546</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Bridged Bicyclo Compounds, Heterocyclic ; Humans ; Microelectrodes ; Nanostructures ; Platinum ; Polymers</subject><ispartof>ACS applied materials &amp; interfaces, 2017-01, Vol.9 (1), p.189-197</ispartof><rights>Copyright © 2016 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a370t-cc96aea53b367516000a86243de1433f093168fff6607a51ab3f3a9e6fc4b4ab3</citedby><cites>FETCH-LOGICAL-a370t-cc96aea53b367516000a86243de1433f093168fff6607a51ab3f3a9e6fc4b4ab3</cites><orcidid>0000-0002-7961-7411</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.6b13468$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.6b13468$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2764,27075,27923,27924,56737,56787</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27936546$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Boehler, Christian</creatorcontrib><creatorcontrib>Oberueber, Felix</creatorcontrib><creatorcontrib>Schlabach, Sabine</creatorcontrib><creatorcontrib>Stieglitz, Thomas</creatorcontrib><creatorcontrib>Asplund, Maria</creatorcontrib><title>Long-Term Stable Adhesion for Conducting Polymers in Biomedical Applications: IrOx and Nanostructured Platinum Solve the Chronic Challenge</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Conducting polymers (CPs) have frequently been described as outstanding coating materials for neural microelectrodes, providing significantly reduced impedance or higher charge injection compared to pure metals. Usability has until now, however, been limited by poor adhesion of polymers like poly­(3,4-ethylenedioxythiophene) (PEDOT) to metallic substrates, ultimately precluding long-term applications. The aim of this study was to overcome this weakness of CPs by introducing two novel adhesion improvement strategies that can easily be integrated with standard microelectrode fabrication processes. Iridium Oxide (IrOx) demonstrated exceptional stability for PEDOT coatings, resulting in polymer survival over 10 000 redox cycles and 110 days under accelerated aging conditions at 60 °C. Nanostructured Pt was furthermore introduced as a purely mechanical adhesion promoter providing 10-fold adhesion improvement compared to smooth Pt substrates by simply altering the morphology of Pt. This layer can be realized in a very simple process that is compatible with any electrode design, turning nanostructured Pt into a universal adhesion layer for CP coatings. By the introduction of these adhesion-promoting strategies, the weakness of CP-based neural probes can ultimately be eliminated and true long-term stable use of PEDOT on neural probes will be possible in future electrode generations.</description><subject>Bridged Bicyclo Compounds, Heterocyclic</subject><subject>Humans</subject><subject>Microelectrodes</subject><subject>Nanostructures</subject><subject>Platinum</subject><subject>Polymers</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kE1r3DAQhkVpaT6aa45Bx1LwVrJk2e5tszQfsDSBJmczlke7CrK0lezS_IX-6qjsJreeZgTP-4p5CDnnbMFZyb-CTjDaheq5kKp5R455K2XRlFX5_m2X8oicpPTEmBIlqz6So7JuhaqkOiZ_18FvigeMI_05Qe-QLoctJhs8NSHSVfDDrCfrN_Q-uOcRY6LW00sbRhysBkeXu53Ly5QT6Ru9jXd_KPiB_gAf0hRzdo440HuXCT_nT4L7jXTaIl1tY_BW5wnOod_gJ_LBgEt4dpin5PHq-8PqpljfXd-ulusCRM2mQutWAUIleqHqiivGGDSqlGJALoUwrBVcNcYYpVgNFYdeGAEtKqNlL_PrlHze9-5i-DVjmrrRJo3Ogccwp443ubVlNRMZXexRHUNKEU23i3aE-Nxx1v3z3-39dwf_OXBx6J77bOgNfxWegS97IAe7pzBHn0_9X9sLnQKR1Q</recordid><startdate>20170111</startdate><enddate>20170111</enddate><creator>Boehler, Christian</creator><creator>Oberueber, Felix</creator><creator>Schlabach, Sabine</creator><creator>Stieglitz, Thomas</creator><creator>Asplund, Maria</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7961-7411</orcidid></search><sort><creationdate>20170111</creationdate><title>Long-Term Stable Adhesion for Conducting Polymers in Biomedical Applications: IrOx and Nanostructured Platinum Solve the Chronic Challenge</title><author>Boehler, Christian ; Oberueber, Felix ; Schlabach, Sabine ; Stieglitz, Thomas ; Asplund, Maria</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a370t-cc96aea53b367516000a86243de1433f093168fff6607a51ab3f3a9e6fc4b4ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Bridged Bicyclo Compounds, Heterocyclic</topic><topic>Humans</topic><topic>Microelectrodes</topic><topic>Nanostructures</topic><topic>Platinum</topic><topic>Polymers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boehler, Christian</creatorcontrib><creatorcontrib>Oberueber, Felix</creatorcontrib><creatorcontrib>Schlabach, Sabine</creatorcontrib><creatorcontrib>Stieglitz, Thomas</creatorcontrib><creatorcontrib>Asplund, Maria</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boehler, Christian</au><au>Oberueber, Felix</au><au>Schlabach, Sabine</au><au>Stieglitz, Thomas</au><au>Asplund, Maria</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Long-Term Stable Adhesion for Conducting Polymers in Biomedical Applications: IrOx and Nanostructured Platinum Solve the Chronic Challenge</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2017-01-11</date><risdate>2017</risdate><volume>9</volume><issue>1</issue><spage>189</spage><epage>197</epage><pages>189-197</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Conducting polymers (CPs) have frequently been described as outstanding coating materials for neural microelectrodes, providing significantly reduced impedance or higher charge injection compared to pure metals. Usability has until now, however, been limited by poor adhesion of polymers like poly­(3,4-ethylenedioxythiophene) (PEDOT) to metallic substrates, ultimately precluding long-term applications. The aim of this study was to overcome this weakness of CPs by introducing two novel adhesion improvement strategies that can easily be integrated with standard microelectrode fabrication processes. Iridium Oxide (IrOx) demonstrated exceptional stability for PEDOT coatings, resulting in polymer survival over 10 000 redox cycles and 110 days under accelerated aging conditions at 60 °C. Nanostructured Pt was furthermore introduced as a purely mechanical adhesion promoter providing 10-fold adhesion improvement compared to smooth Pt substrates by simply altering the morphology of Pt. This layer can be realized in a very simple process that is compatible with any electrode design, turning nanostructured Pt into a universal adhesion layer for CP coatings. By the introduction of these adhesion-promoting strategies, the weakness of CP-based neural probes can ultimately be eliminated and true long-term stable use of PEDOT on neural probes will be possible in future electrode generations.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>27936546</pmid><doi>10.1021/acsami.6b13468</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-7961-7411</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2017-01, Vol.9 (1), p.189-197
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_1851690703
source MEDLINE; ACS Publications
subjects Bridged Bicyclo Compounds, Heterocyclic
Humans
Microelectrodes
Nanostructures
Platinum
Polymers
title Long-Term Stable Adhesion for Conducting Polymers in Biomedical Applications: IrOx and Nanostructured Platinum Solve the Chronic Challenge
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T06%3A08%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Long-Term%20Stable%20Adhesion%20for%20Conducting%20Polymers%20in%20Biomedical%20Applications:%20IrOx%20and%20Nanostructured%20Platinum%20Solve%20the%20Chronic%20Challenge&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Boehler,%20Christian&rft.date=2017-01-11&rft.volume=9&rft.issue=1&rft.spage=189&rft.epage=197&rft.pages=189-197&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.6b13468&rft_dat=%3Cproquest_cross%3E1851690703%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1851690703&rft_id=info:pmid/27936546&rfr_iscdi=true