Myocardial VHL-HIF Signaling Controls an Embryonic Metabolic Switch Essential for Cardiac Maturation

While gene regulatory networks involved in cardiogenesis have been characterized, the role of bioenergetics remains less studied. Here we show that until midgestation, myocardial metabolism is compartmentalized, with a glycolytic signature restricted to compact myocardium contrasting with increased...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Developmental cell 2016-12, Vol.39 (6), p.724-739
Hauptverfasser: Menendez-Montes, Ivan, Escobar, Beatriz, Palacios, Beatriz, Gómez, Manuel Jose, Izquierdo-Garcia, Jose Luis, Flores, Lorena, Jiménez-Borreguero, Luis Jesus, Aragones, Julian, Ruiz-Cabello, Jesus, Torres, Miguel, Martin-Puig, Silvia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 739
container_issue 6
container_start_page 724
container_title Developmental cell
container_volume 39
creator Menendez-Montes, Ivan
Escobar, Beatriz
Palacios, Beatriz
Gómez, Manuel Jose
Izquierdo-Garcia, Jose Luis
Flores, Lorena
Jiménez-Borreguero, Luis Jesus
Aragones, Julian
Ruiz-Cabello, Jesus
Torres, Miguel
Martin-Puig, Silvia
description While gene regulatory networks involved in cardiogenesis have been characterized, the role of bioenergetics remains less studied. Here we show that until midgestation, myocardial metabolism is compartmentalized, with a glycolytic signature restricted to compact myocardium contrasting with increased mitochondrial oxidative activity in the trabeculae. HIF1α regulation mirrors this pattern, with expression predominating in compact myocardium and scarce in trabeculae. By midgestation, the compact myocardium downregulates HIF1α and switches toward oxidative metabolism. Deletion of the E3 ubiquitin ligase Vhl results in HIF1α hyperactivation, blocking the midgestational metabolic shift and impairing cardiac maturation and function. Moreover, the altered glycolytic signature induced by HIF1 trabecular activation precludes regulation of genes essential for establishment of the cardiac conduction system. Our findings reveal VHL-HIF-mediated metabolic compartmentalization in the developing heart and the connection between metabolism and myocardial differentiation. These results highlight the importance of bioenergetics in ventricular myocardium specialization and its potential relevance to congenital heart disease. [Display omitted] •HIF1 promotes an enhanced glycolytic program in the embryonic compact myocardium•Midgestational trabeculae devoid of HIF1α display increased mitochondrial content•HIF1 signaling controls a midgestational switch toward oxidative metabolism•VHL/HIF signaling disruption compromises cardiac function and maturation Menendez-Montes et al. describe how spatiotemporal activation of VHL/HIF signaling within the developing myocardium delineates metabolic compartments with enhanced glycolytic signature in the compact myocardium compared with increased mitochondrial activity in midgestation trabeculae. Sustained HIF1 activation results in ventricular chamber defects, cardiac dysfunction, and altered expression of conduction system genes.
doi_str_mv 10.1016/j.devcel.2016.11.012
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1851304057</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1534580716308243</els_id><sourcerecordid>1851304057</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-545379027ad2bfb64cd0b54b7706d938d8e5863adebfe8316df9baab5ebb8183</originalsourceid><addsrcrecordid>eNp9kE1P3DAQhq0KVCj0HyCUI5ekniSOnUularV0kRZxAHG1_DGhXmVtanup9t_X26U99jQz0jPvaB5CroA2QGH4smksvhmcm7ZMDUBDof1AzkFwUQNjcFJ61vU1E5SfkU8pbWgBQdCP5Kzl48hFy8-Jvd8Ho6J1aq6eV-t6dXdbPboXr2bnX6pF8DmGOVXKV8utjvvgnanuMSsd5tI9_nLZ_KiWKaHPh4gpxGrxJ65gKu-iyi74S3I6qTnh5_d6QZ5ul0-LVb1--H63-LauTc_7XLOedXykLVe21ZMeemOpZr3mnA527IQVyMTQKYt6QtHBYKdRK6UZai1AdBfk5hj7GsPPHaYsty4VQ7PyGHZJgmDQ0Z4yXtD-iJoYUoo4ydfotiruJVB50Cs38qhXHvRKAFn0lrXr9ws7vUX7b-mvzwJ8PQJY3nxzGGUyDr1B6yKaLG1w_7_wG3X5jhU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1851304057</pqid></control><display><type>article</type><title>Myocardial VHL-HIF Signaling Controls an Embryonic Metabolic Switch Essential for Cardiac Maturation</title><source>ScienceDirect</source><source>MEDLINE</source><source>Cell Press Free Archives</source><source>EZB Electronic Journals Library</source><creator>Menendez-Montes, Ivan ; Escobar, Beatriz ; Palacios, Beatriz ; Gómez, Manuel Jose ; Izquierdo-Garcia, Jose Luis ; Flores, Lorena ; Jiménez-Borreguero, Luis Jesus ; Aragones, Julian ; Ruiz-Cabello, Jesus ; Torres, Miguel ; Martin-Puig, Silvia</creator><creatorcontrib>Menendez-Montes, Ivan ; Escobar, Beatriz ; Palacios, Beatriz ; Gómez, Manuel Jose ; Izquierdo-Garcia, Jose Luis ; Flores, Lorena ; Jiménez-Borreguero, Luis Jesus ; Aragones, Julian ; Ruiz-Cabello, Jesus ; Torres, Miguel ; Martin-Puig, Silvia</creatorcontrib><description>While gene regulatory networks involved in cardiogenesis have been characterized, the role of bioenergetics remains less studied. Here we show that until midgestation, myocardial metabolism is compartmentalized, with a glycolytic signature restricted to compact myocardium contrasting with increased mitochondrial oxidative activity in the trabeculae. HIF1α regulation mirrors this pattern, with expression predominating in compact myocardium and scarce in trabeculae. By midgestation, the compact myocardium downregulates HIF1α and switches toward oxidative metabolism. Deletion of the E3 ubiquitin ligase Vhl results in HIF1α hyperactivation, blocking the midgestational metabolic shift and impairing cardiac maturation and function. Moreover, the altered glycolytic signature induced by HIF1 trabecular activation precludes regulation of genes essential for establishment of the cardiac conduction system. Our findings reveal VHL-HIF-mediated metabolic compartmentalization in the developing heart and the connection between metabolism and myocardial differentiation. These results highlight the importance of bioenergetics in ventricular myocardium specialization and its potential relevance to congenital heart disease. [Display omitted] •HIF1 promotes an enhanced glycolytic program in the embryonic compact myocardium•Midgestational trabeculae devoid of HIF1α display increased mitochondrial content•HIF1 signaling controls a midgestational switch toward oxidative metabolism•VHL/HIF signaling disruption compromises cardiac function and maturation Menendez-Montes et al. describe how spatiotemporal activation of VHL/HIF signaling within the developing myocardium delineates metabolic compartments with enhanced glycolytic signature in the compact myocardium compared with increased mitochondrial activity in midgestation trabeculae. Sustained HIF1 activation results in ventricular chamber defects, cardiac dysfunction, and altered expression of conduction system genes.</description><identifier>ISSN: 1534-5807</identifier><identifier>EISSN: 1878-1551</identifier><identifier>DOI: 10.1016/j.devcel.2016.11.012</identifier><identifier>PMID: 27997827</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; cardiac conduction system ; cardiac maturation ; Cell Compartmentation ; Down-Regulation - genetics ; Energy Metabolism ; Female ; Gene Deletion ; Gene Expression Regulation, Developmental ; Glycolysis ; Heart Conduction System - embryology ; Heart Conduction System - metabolism ; heart development ; Heart Failure - embryology ; Heart Failure - metabolism ; HIF ; hypoxia ; Hypoxia-Inducible Factor 1, alpha Subunit - metabolism ; metabolic reprogramming ; Mice, Inbred C57BL ; mitochondria ; Mitochondria - metabolism ; Mutation - genetics ; Myocardial Contraction ; Myocardium - metabolism ; Organogenesis ; Oxidation-Reduction ; Pregnancy ; Signal Transduction ; Stem Cells - cytology ; Stem Cells - metabolism ; Time Factors ; transcriptional repression ; VHL ; Von Hippel-Lindau Tumor Suppressor Protein - metabolism</subject><ispartof>Developmental cell, 2016-12, Vol.39 (6), p.724-739</ispartof><rights>2016 Elsevier Inc.</rights><rights>Copyright © 2016 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-545379027ad2bfb64cd0b54b7706d938d8e5863adebfe8316df9baab5ebb8183</citedby><cites>FETCH-LOGICAL-c474t-545379027ad2bfb64cd0b54b7706d938d8e5863adebfe8316df9baab5ebb8183</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1534580716308243$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27997827$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Menendez-Montes, Ivan</creatorcontrib><creatorcontrib>Escobar, Beatriz</creatorcontrib><creatorcontrib>Palacios, Beatriz</creatorcontrib><creatorcontrib>Gómez, Manuel Jose</creatorcontrib><creatorcontrib>Izquierdo-Garcia, Jose Luis</creatorcontrib><creatorcontrib>Flores, Lorena</creatorcontrib><creatorcontrib>Jiménez-Borreguero, Luis Jesus</creatorcontrib><creatorcontrib>Aragones, Julian</creatorcontrib><creatorcontrib>Ruiz-Cabello, Jesus</creatorcontrib><creatorcontrib>Torres, Miguel</creatorcontrib><creatorcontrib>Martin-Puig, Silvia</creatorcontrib><title>Myocardial VHL-HIF Signaling Controls an Embryonic Metabolic Switch Essential for Cardiac Maturation</title><title>Developmental cell</title><addtitle>Dev Cell</addtitle><description>While gene regulatory networks involved in cardiogenesis have been characterized, the role of bioenergetics remains less studied. Here we show that until midgestation, myocardial metabolism is compartmentalized, with a glycolytic signature restricted to compact myocardium contrasting with increased mitochondrial oxidative activity in the trabeculae. HIF1α regulation mirrors this pattern, with expression predominating in compact myocardium and scarce in trabeculae. By midgestation, the compact myocardium downregulates HIF1α and switches toward oxidative metabolism. Deletion of the E3 ubiquitin ligase Vhl results in HIF1α hyperactivation, blocking the midgestational metabolic shift and impairing cardiac maturation and function. Moreover, the altered glycolytic signature induced by HIF1 trabecular activation precludes regulation of genes essential for establishment of the cardiac conduction system. Our findings reveal VHL-HIF-mediated metabolic compartmentalization in the developing heart and the connection between metabolism and myocardial differentiation. These results highlight the importance of bioenergetics in ventricular myocardium specialization and its potential relevance to congenital heart disease. [Display omitted] •HIF1 promotes an enhanced glycolytic program in the embryonic compact myocardium•Midgestational trabeculae devoid of HIF1α display increased mitochondrial content•HIF1 signaling controls a midgestational switch toward oxidative metabolism•VHL/HIF signaling disruption compromises cardiac function and maturation Menendez-Montes et al. describe how spatiotemporal activation of VHL/HIF signaling within the developing myocardium delineates metabolic compartments with enhanced glycolytic signature in the compact myocardium compared with increased mitochondrial activity in midgestation trabeculae. Sustained HIF1 activation results in ventricular chamber defects, cardiac dysfunction, and altered expression of conduction system genes.</description><subject>Animals</subject><subject>cardiac conduction system</subject><subject>cardiac maturation</subject><subject>Cell Compartmentation</subject><subject>Down-Regulation - genetics</subject><subject>Energy Metabolism</subject><subject>Female</subject><subject>Gene Deletion</subject><subject>Gene Expression Regulation, Developmental</subject><subject>Glycolysis</subject><subject>Heart Conduction System - embryology</subject><subject>Heart Conduction System - metabolism</subject><subject>heart development</subject><subject>Heart Failure - embryology</subject><subject>Heart Failure - metabolism</subject><subject>HIF</subject><subject>hypoxia</subject><subject>Hypoxia-Inducible Factor 1, alpha Subunit - metabolism</subject><subject>metabolic reprogramming</subject><subject>Mice, Inbred C57BL</subject><subject>mitochondria</subject><subject>Mitochondria - metabolism</subject><subject>Mutation - genetics</subject><subject>Myocardial Contraction</subject><subject>Myocardium - metabolism</subject><subject>Organogenesis</subject><subject>Oxidation-Reduction</subject><subject>Pregnancy</subject><subject>Signal Transduction</subject><subject>Stem Cells - cytology</subject><subject>Stem Cells - metabolism</subject><subject>Time Factors</subject><subject>transcriptional repression</subject><subject>VHL</subject><subject>Von Hippel-Lindau Tumor Suppressor Protein - metabolism</subject><issn>1534-5807</issn><issn>1878-1551</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1P3DAQhq0KVCj0HyCUI5ekniSOnUularV0kRZxAHG1_DGhXmVtanup9t_X26U99jQz0jPvaB5CroA2QGH4smksvhmcm7ZMDUBDof1AzkFwUQNjcFJ61vU1E5SfkU8pbWgBQdCP5Kzl48hFy8-Jvd8Ho6J1aq6eV-t6dXdbPboXr2bnX6pF8DmGOVXKV8utjvvgnanuMSsd5tI9_nLZ_KiWKaHPh4gpxGrxJ65gKu-iyi74S3I6qTnh5_d6QZ5ul0-LVb1--H63-LauTc_7XLOedXykLVe21ZMeemOpZr3mnA527IQVyMTQKYt6QtHBYKdRK6UZai1AdBfk5hj7GsPPHaYsty4VQ7PyGHZJgmDQ0Z4yXtD-iJoYUoo4ydfotiruJVB50Cs38qhXHvRKAFn0lrXr9ws7vUX7b-mvzwJ8PQJY3nxzGGUyDr1B6yKaLG1w_7_wG3X5jhU</recordid><startdate>20161219</startdate><enddate>20161219</enddate><creator>Menendez-Montes, Ivan</creator><creator>Escobar, Beatriz</creator><creator>Palacios, Beatriz</creator><creator>Gómez, Manuel Jose</creator><creator>Izquierdo-Garcia, Jose Luis</creator><creator>Flores, Lorena</creator><creator>Jiménez-Borreguero, Luis Jesus</creator><creator>Aragones, Julian</creator><creator>Ruiz-Cabello, Jesus</creator><creator>Torres, Miguel</creator><creator>Martin-Puig, Silvia</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20161219</creationdate><title>Myocardial VHL-HIF Signaling Controls an Embryonic Metabolic Switch Essential for Cardiac Maturation</title><author>Menendez-Montes, Ivan ; Escobar, Beatriz ; Palacios, Beatriz ; Gómez, Manuel Jose ; Izquierdo-Garcia, Jose Luis ; Flores, Lorena ; Jiménez-Borreguero, Luis Jesus ; Aragones, Julian ; Ruiz-Cabello, Jesus ; Torres, Miguel ; Martin-Puig, Silvia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-545379027ad2bfb64cd0b54b7706d938d8e5863adebfe8316df9baab5ebb8183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Animals</topic><topic>cardiac conduction system</topic><topic>cardiac maturation</topic><topic>Cell Compartmentation</topic><topic>Down-Regulation - genetics</topic><topic>Energy Metabolism</topic><topic>Female</topic><topic>Gene Deletion</topic><topic>Gene Expression Regulation, Developmental</topic><topic>Glycolysis</topic><topic>Heart Conduction System - embryology</topic><topic>Heart Conduction System - metabolism</topic><topic>heart development</topic><topic>Heart Failure - embryology</topic><topic>Heart Failure - metabolism</topic><topic>HIF</topic><topic>hypoxia</topic><topic>Hypoxia-Inducible Factor 1, alpha Subunit - metabolism</topic><topic>metabolic reprogramming</topic><topic>Mice, Inbred C57BL</topic><topic>mitochondria</topic><topic>Mitochondria - metabolism</topic><topic>Mutation - genetics</topic><topic>Myocardial Contraction</topic><topic>Myocardium - metabolism</topic><topic>Organogenesis</topic><topic>Oxidation-Reduction</topic><topic>Pregnancy</topic><topic>Signal Transduction</topic><topic>Stem Cells - cytology</topic><topic>Stem Cells - metabolism</topic><topic>Time Factors</topic><topic>transcriptional repression</topic><topic>VHL</topic><topic>Von Hippel-Lindau Tumor Suppressor Protein - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Menendez-Montes, Ivan</creatorcontrib><creatorcontrib>Escobar, Beatriz</creatorcontrib><creatorcontrib>Palacios, Beatriz</creatorcontrib><creatorcontrib>Gómez, Manuel Jose</creatorcontrib><creatorcontrib>Izquierdo-Garcia, Jose Luis</creatorcontrib><creatorcontrib>Flores, Lorena</creatorcontrib><creatorcontrib>Jiménez-Borreguero, Luis Jesus</creatorcontrib><creatorcontrib>Aragones, Julian</creatorcontrib><creatorcontrib>Ruiz-Cabello, Jesus</creatorcontrib><creatorcontrib>Torres, Miguel</creatorcontrib><creatorcontrib>Martin-Puig, Silvia</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Developmental cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Menendez-Montes, Ivan</au><au>Escobar, Beatriz</au><au>Palacios, Beatriz</au><au>Gómez, Manuel Jose</au><au>Izquierdo-Garcia, Jose Luis</au><au>Flores, Lorena</au><au>Jiménez-Borreguero, Luis Jesus</au><au>Aragones, Julian</au><au>Ruiz-Cabello, Jesus</au><au>Torres, Miguel</au><au>Martin-Puig, Silvia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Myocardial VHL-HIF Signaling Controls an Embryonic Metabolic Switch Essential for Cardiac Maturation</atitle><jtitle>Developmental cell</jtitle><addtitle>Dev Cell</addtitle><date>2016-12-19</date><risdate>2016</risdate><volume>39</volume><issue>6</issue><spage>724</spage><epage>739</epage><pages>724-739</pages><issn>1534-5807</issn><eissn>1878-1551</eissn><abstract>While gene regulatory networks involved in cardiogenesis have been characterized, the role of bioenergetics remains less studied. Here we show that until midgestation, myocardial metabolism is compartmentalized, with a glycolytic signature restricted to compact myocardium contrasting with increased mitochondrial oxidative activity in the trabeculae. HIF1α regulation mirrors this pattern, with expression predominating in compact myocardium and scarce in trabeculae. By midgestation, the compact myocardium downregulates HIF1α and switches toward oxidative metabolism. Deletion of the E3 ubiquitin ligase Vhl results in HIF1α hyperactivation, blocking the midgestational metabolic shift and impairing cardiac maturation and function. Moreover, the altered glycolytic signature induced by HIF1 trabecular activation precludes regulation of genes essential for establishment of the cardiac conduction system. Our findings reveal VHL-HIF-mediated metabolic compartmentalization in the developing heart and the connection between metabolism and myocardial differentiation. These results highlight the importance of bioenergetics in ventricular myocardium specialization and its potential relevance to congenital heart disease. [Display omitted] •HIF1 promotes an enhanced glycolytic program in the embryonic compact myocardium•Midgestational trabeculae devoid of HIF1α display increased mitochondrial content•HIF1 signaling controls a midgestational switch toward oxidative metabolism•VHL/HIF signaling disruption compromises cardiac function and maturation Menendez-Montes et al. describe how spatiotemporal activation of VHL/HIF signaling within the developing myocardium delineates metabolic compartments with enhanced glycolytic signature in the compact myocardium compared with increased mitochondrial activity in midgestation trabeculae. Sustained HIF1 activation results in ventricular chamber defects, cardiac dysfunction, and altered expression of conduction system genes.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>27997827</pmid><doi>10.1016/j.devcel.2016.11.012</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1534-5807
ispartof Developmental cell, 2016-12, Vol.39 (6), p.724-739
issn 1534-5807
1878-1551
language eng
recordid cdi_proquest_miscellaneous_1851304057
source ScienceDirect; MEDLINE; Cell Press Free Archives; EZB Electronic Journals Library
subjects Animals
cardiac conduction system
cardiac maturation
Cell Compartmentation
Down-Regulation - genetics
Energy Metabolism
Female
Gene Deletion
Gene Expression Regulation, Developmental
Glycolysis
Heart Conduction System - embryology
Heart Conduction System - metabolism
heart development
Heart Failure - embryology
Heart Failure - metabolism
HIF
hypoxia
Hypoxia-Inducible Factor 1, alpha Subunit - metabolism
metabolic reprogramming
Mice, Inbred C57BL
mitochondria
Mitochondria - metabolism
Mutation - genetics
Myocardial Contraction
Myocardium - metabolism
Organogenesis
Oxidation-Reduction
Pregnancy
Signal Transduction
Stem Cells - cytology
Stem Cells - metabolism
Time Factors
transcriptional repression
VHL
Von Hippel-Lindau Tumor Suppressor Protein - metabolism
title Myocardial VHL-HIF Signaling Controls an Embryonic Metabolic Switch Essential for Cardiac Maturation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T00%3A16%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Myocardial%20VHL-HIF%20Signaling%20Controls%20an%20Embryonic%20Metabolic%20Switch%20Essential%20for%20Cardiac%20Maturation&rft.jtitle=Developmental%20cell&rft.au=Menendez-Montes,%20Ivan&rft.date=2016-12-19&rft.volume=39&rft.issue=6&rft.spage=724&rft.epage=739&rft.pages=724-739&rft.issn=1534-5807&rft.eissn=1878-1551&rft_id=info:doi/10.1016/j.devcel.2016.11.012&rft_dat=%3Cproquest_cross%3E1851304057%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1851304057&rft_id=info:pmid/27997827&rft_els_id=S1534580716308243&rfr_iscdi=true