Multiple incipient sensor faults diagnosis with application to high-speed railway traction devices
This paper deals with the problem of incipient fault diagnosis for a class of Lipschitz nonlinear systems with sensor biases and explores further results of total measurable fault information residual (ToMFIR). Firstly, state and output transformations are introduced to transform the original system...
Gespeichert in:
Veröffentlicht in: | ISA transactions 2017-03, Vol.67, p.183-192 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 192 |
---|---|
container_issue | |
container_start_page | 183 |
container_title | ISA transactions |
container_volume | 67 |
creator | Wu, Yunkai Jiang, Bin Lu, Ningyun Yang, Hao Zhou, Yang |
description | This paper deals with the problem of incipient fault diagnosis for a class of Lipschitz nonlinear systems with sensor biases and explores further results of total measurable fault information residual (ToMFIR). Firstly, state and output transformations are introduced to transform the original system into two subsystems. The first subsystem is subject to system disturbances and free from sensor faults, while the second subsystem contains sensor faults but without any system disturbances. Sensor faults in the second subsystem are then formed as actuator faults by using a pseudo-actuator based approach. Since the effects of system disturbances on the residual are completely decoupled, multiple incipient sensor faults can be detected by constructing ToMFIR, and the fault detectability condition is then derived for discriminating the detectable incipient sensor faults. Further, a sliding-mode observers (SMOs) based fault isolation scheme is designed to guarantee accurate isolation of multiple sensor faults. Finally, simulation results conducted on a CRH2 high-speed railway traction device are given to demonstrate the effectiveness of the proposed approach.
•A solution to multiple incipient fault detection and isolation was proposed.•Further results of ToMFIR residual were explored.•Practical applications on CRH2 high-speed train. |
doi_str_mv | 10.1016/j.isatra.2016.12.001 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1851302887</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0019057816308229</els_id><sourcerecordid>1851302887</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-2b24ba92fdbd0b24c0df7dbc2b4af3d460bb7d694d4073654c5968bc5ef4a6093</originalsourceid><addsrcrecordid>eNp9kMlOHDEQhi2UCIblDRDyMZfu2O7VFySEkoBElEtytrxUMzXq6W5cHhBvH8MAR061_bV9jJ1LUUoh2--bEsmmaEuVo1KqUgh5wFay73ShhFJf2CpndCGarj9ix0QbIYRqdH_IjlSndVU17Yq537sx4TICx8njgjAlTjDRHPlgc4l4QHs_zYTEnzCtuV2WEb1NOE88zXyN9-uCFoDAo8XxyT7zfJN_LQd4RA90yr4OdiQ4e7Mn7N_PH3-vb4q7P79ur6_uCl-1KhXKqdpZrYbggsi-F2HogvPK1XaoQt0K57rQ6jrUoqvapvaNbnvnGxhq2wpdnbBv-7lLnB92QMlskTyMo51g3pGRfSMrofq-y9J6L_VxJoowmCXi1sZnI4V5oWs2Zk_XvNA1UpnMMrddvG3YuS2Ej6Z3nFlwuRdA_vMRIRryGamHgBF8MmHGzzf8B8g-j7o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1851302887</pqid></control><display><type>article</type><title>Multiple incipient sensor faults diagnosis with application to high-speed railway traction devices</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Wu, Yunkai ; Jiang, Bin ; Lu, Ningyun ; Yang, Hao ; Zhou, Yang</creator><creatorcontrib>Wu, Yunkai ; Jiang, Bin ; Lu, Ningyun ; Yang, Hao ; Zhou, Yang</creatorcontrib><description>This paper deals with the problem of incipient fault diagnosis for a class of Lipschitz nonlinear systems with sensor biases and explores further results of total measurable fault information residual (ToMFIR). Firstly, state and output transformations are introduced to transform the original system into two subsystems. The first subsystem is subject to system disturbances and free from sensor faults, while the second subsystem contains sensor faults but without any system disturbances. Sensor faults in the second subsystem are then formed as actuator faults by using a pseudo-actuator based approach. Since the effects of system disturbances on the residual are completely decoupled, multiple incipient sensor faults can be detected by constructing ToMFIR, and the fault detectability condition is then derived for discriminating the detectable incipient sensor faults. Further, a sliding-mode observers (SMOs) based fault isolation scheme is designed to guarantee accurate isolation of multiple sensor faults. Finally, simulation results conducted on a CRH2 high-speed railway traction device are given to demonstrate the effectiveness of the proposed approach.
•A solution to multiple incipient fault detection and isolation was proposed.•Further results of ToMFIR residual were explored.•Practical applications on CRH2 high-speed train.</description><identifier>ISSN: 0019-0578</identifier><identifier>EISSN: 1879-2022</identifier><identifier>DOI: 10.1016/j.isatra.2016.12.001</identifier><identifier>PMID: 27993356</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>High-speed railway traction device ; Incipient fault diagnosis ; Nonlinear system ; Sensor bias ; Total measurable fault information residual (ToMFIR)</subject><ispartof>ISA transactions, 2017-03, Vol.67, p.183-192</ispartof><rights>2016 ISA</rights><rights>Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-2b24ba92fdbd0b24c0df7dbc2b4af3d460bb7d694d4073654c5968bc5ef4a6093</citedby><cites>FETCH-LOGICAL-c362t-2b24ba92fdbd0b24c0df7dbc2b4af3d460bb7d694d4073654c5968bc5ef4a6093</cites><orcidid>0000-0002-1156-2557</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.isatra.2016.12.001$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27928,27929,45999</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27993356$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, Yunkai</creatorcontrib><creatorcontrib>Jiang, Bin</creatorcontrib><creatorcontrib>Lu, Ningyun</creatorcontrib><creatorcontrib>Yang, Hao</creatorcontrib><creatorcontrib>Zhou, Yang</creatorcontrib><title>Multiple incipient sensor faults diagnosis with application to high-speed railway traction devices</title><title>ISA transactions</title><addtitle>ISA Trans</addtitle><description>This paper deals with the problem of incipient fault diagnosis for a class of Lipschitz nonlinear systems with sensor biases and explores further results of total measurable fault information residual (ToMFIR). Firstly, state and output transformations are introduced to transform the original system into two subsystems. The first subsystem is subject to system disturbances and free from sensor faults, while the second subsystem contains sensor faults but without any system disturbances. Sensor faults in the second subsystem are then formed as actuator faults by using a pseudo-actuator based approach. Since the effects of system disturbances on the residual are completely decoupled, multiple incipient sensor faults can be detected by constructing ToMFIR, and the fault detectability condition is then derived for discriminating the detectable incipient sensor faults. Further, a sliding-mode observers (SMOs) based fault isolation scheme is designed to guarantee accurate isolation of multiple sensor faults. Finally, simulation results conducted on a CRH2 high-speed railway traction device are given to demonstrate the effectiveness of the proposed approach.
•A solution to multiple incipient fault detection and isolation was proposed.•Further results of ToMFIR residual were explored.•Practical applications on CRH2 high-speed train.</description><subject>High-speed railway traction device</subject><subject>Incipient fault diagnosis</subject><subject>Nonlinear system</subject><subject>Sensor bias</subject><subject>Total measurable fault information residual (ToMFIR)</subject><issn>0019-0578</issn><issn>1879-2022</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kMlOHDEQhi2UCIblDRDyMZfu2O7VFySEkoBElEtytrxUMzXq6W5cHhBvH8MAR061_bV9jJ1LUUoh2--bEsmmaEuVo1KqUgh5wFay73ShhFJf2CpndCGarj9ix0QbIYRqdH_IjlSndVU17Yq537sx4TICx8njgjAlTjDRHPlgc4l4QHs_zYTEnzCtuV2WEb1NOE88zXyN9-uCFoDAo8XxyT7zfJN_LQd4RA90yr4OdiQ4e7Mn7N_PH3-vb4q7P79ur6_uCl-1KhXKqdpZrYbggsi-F2HogvPK1XaoQt0K57rQ6jrUoqvapvaNbnvnGxhq2wpdnbBv-7lLnB92QMlskTyMo51g3pGRfSMrofq-y9J6L_VxJoowmCXi1sZnI4V5oWs2Zk_XvNA1UpnMMrddvG3YuS2Ej6Z3nFlwuRdA_vMRIRryGamHgBF8MmHGzzf8B8g-j7o</recordid><startdate>201703</startdate><enddate>201703</enddate><creator>Wu, Yunkai</creator><creator>Jiang, Bin</creator><creator>Lu, Ningyun</creator><creator>Yang, Hao</creator><creator>Zhou, Yang</creator><general>Elsevier Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1156-2557</orcidid></search><sort><creationdate>201703</creationdate><title>Multiple incipient sensor faults diagnosis with application to high-speed railway traction devices</title><author>Wu, Yunkai ; Jiang, Bin ; Lu, Ningyun ; Yang, Hao ; Zhou, Yang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-2b24ba92fdbd0b24c0df7dbc2b4af3d460bb7d694d4073654c5968bc5ef4a6093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>High-speed railway traction device</topic><topic>Incipient fault diagnosis</topic><topic>Nonlinear system</topic><topic>Sensor bias</topic><topic>Total measurable fault information residual (ToMFIR)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Yunkai</creatorcontrib><creatorcontrib>Jiang, Bin</creatorcontrib><creatorcontrib>Lu, Ningyun</creatorcontrib><creatorcontrib>Yang, Hao</creatorcontrib><creatorcontrib>Zhou, Yang</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ISA transactions</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Yunkai</au><au>Jiang, Bin</au><au>Lu, Ningyun</au><au>Yang, Hao</au><au>Zhou, Yang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiple incipient sensor faults diagnosis with application to high-speed railway traction devices</atitle><jtitle>ISA transactions</jtitle><addtitle>ISA Trans</addtitle><date>2017-03</date><risdate>2017</risdate><volume>67</volume><spage>183</spage><epage>192</epage><pages>183-192</pages><issn>0019-0578</issn><eissn>1879-2022</eissn><abstract>This paper deals with the problem of incipient fault diagnosis for a class of Lipschitz nonlinear systems with sensor biases and explores further results of total measurable fault information residual (ToMFIR). Firstly, state and output transformations are introduced to transform the original system into two subsystems. The first subsystem is subject to system disturbances and free from sensor faults, while the second subsystem contains sensor faults but without any system disturbances. Sensor faults in the second subsystem are then formed as actuator faults by using a pseudo-actuator based approach. Since the effects of system disturbances on the residual are completely decoupled, multiple incipient sensor faults can be detected by constructing ToMFIR, and the fault detectability condition is then derived for discriminating the detectable incipient sensor faults. Further, a sliding-mode observers (SMOs) based fault isolation scheme is designed to guarantee accurate isolation of multiple sensor faults. Finally, simulation results conducted on a CRH2 high-speed railway traction device are given to demonstrate the effectiveness of the proposed approach.
•A solution to multiple incipient fault detection and isolation was proposed.•Further results of ToMFIR residual were explored.•Practical applications on CRH2 high-speed train.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>27993356</pmid><doi>10.1016/j.isatra.2016.12.001</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-1156-2557</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0019-0578 |
ispartof | ISA transactions, 2017-03, Vol.67, p.183-192 |
issn | 0019-0578 1879-2022 |
language | eng |
recordid | cdi_proquest_miscellaneous_1851302887 |
source | Elsevier ScienceDirect Journals Complete |
subjects | High-speed railway traction device Incipient fault diagnosis Nonlinear system Sensor bias Total measurable fault information residual (ToMFIR) |
title | Multiple incipient sensor faults diagnosis with application to high-speed railway traction devices |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T06%3A59%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiple%20incipient%20sensor%20faults%20diagnosis%20with%20application%20to%20high-speed%20railway%20traction%20devices&rft.jtitle=ISA%20transactions&rft.au=Wu,%20Yunkai&rft.date=2017-03&rft.volume=67&rft.spage=183&rft.epage=192&rft.pages=183-192&rft.issn=0019-0578&rft.eissn=1879-2022&rft_id=info:doi/10.1016/j.isatra.2016.12.001&rft_dat=%3Cproquest_cross%3E1851302887%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1851302887&rft_id=info:pmid/27993356&rft_els_id=S0019057816308229&rfr_iscdi=true |