Multiple incipient sensor faults diagnosis with application to high-speed railway traction devices

This paper deals with the problem of incipient fault diagnosis for a class of Lipschitz nonlinear systems with sensor biases and explores further results of total measurable fault information residual (ToMFIR). Firstly, state and output transformations are introduced to transform the original system...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ISA transactions 2017-03, Vol.67, p.183-192
Hauptverfasser: Wu, Yunkai, Jiang, Bin, Lu, Ningyun, Yang, Hao, Zhou, Yang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 192
container_issue
container_start_page 183
container_title ISA transactions
container_volume 67
creator Wu, Yunkai
Jiang, Bin
Lu, Ningyun
Yang, Hao
Zhou, Yang
description This paper deals with the problem of incipient fault diagnosis for a class of Lipschitz nonlinear systems with sensor biases and explores further results of total measurable fault information residual (ToMFIR). Firstly, state and output transformations are introduced to transform the original system into two subsystems. The first subsystem is subject to system disturbances and free from sensor faults, while the second subsystem contains sensor faults but without any system disturbances. Sensor faults in the second subsystem are then formed as actuator faults by using a pseudo-actuator based approach. Since the effects of system disturbances on the residual are completely decoupled, multiple incipient sensor faults can be detected by constructing ToMFIR, and the fault detectability condition is then derived for discriminating the detectable incipient sensor faults. Further, a sliding-mode observers (SMOs) based fault isolation scheme is designed to guarantee accurate isolation of multiple sensor faults. Finally, simulation results conducted on a CRH2 high-speed railway traction device are given to demonstrate the effectiveness of the proposed approach. •A solution to multiple incipient fault detection and isolation was proposed.•Further results of ToMFIR residual were explored.•Practical applications on CRH2 high-speed train.
doi_str_mv 10.1016/j.isatra.2016.12.001
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1851302887</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0019057816308229</els_id><sourcerecordid>1851302887</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-2b24ba92fdbd0b24c0df7dbc2b4af3d460bb7d694d4073654c5968bc5ef4a6093</originalsourceid><addsrcrecordid>eNp9kMlOHDEQhi2UCIblDRDyMZfu2O7VFySEkoBElEtytrxUMzXq6W5cHhBvH8MAR061_bV9jJ1LUUoh2--bEsmmaEuVo1KqUgh5wFay73ShhFJf2CpndCGarj9ix0QbIYRqdH_IjlSndVU17Yq537sx4TICx8njgjAlTjDRHPlgc4l4QHs_zYTEnzCtuV2WEb1NOE88zXyN9-uCFoDAo8XxyT7zfJN_LQd4RA90yr4OdiQ4e7Mn7N_PH3-vb4q7P79ur6_uCl-1KhXKqdpZrYbggsi-F2HogvPK1XaoQt0K57rQ6jrUoqvapvaNbnvnGxhq2wpdnbBv-7lLnB92QMlskTyMo51g3pGRfSMrofq-y9J6L_VxJoowmCXi1sZnI4V5oWs2Zk_XvNA1UpnMMrddvG3YuS2Ej6Z3nFlwuRdA_vMRIRryGamHgBF8MmHGzzf8B8g-j7o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1851302887</pqid></control><display><type>article</type><title>Multiple incipient sensor faults diagnosis with application to high-speed railway traction devices</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Wu, Yunkai ; Jiang, Bin ; Lu, Ningyun ; Yang, Hao ; Zhou, Yang</creator><creatorcontrib>Wu, Yunkai ; Jiang, Bin ; Lu, Ningyun ; Yang, Hao ; Zhou, Yang</creatorcontrib><description>This paper deals with the problem of incipient fault diagnosis for a class of Lipschitz nonlinear systems with sensor biases and explores further results of total measurable fault information residual (ToMFIR). Firstly, state and output transformations are introduced to transform the original system into two subsystems. The first subsystem is subject to system disturbances and free from sensor faults, while the second subsystem contains sensor faults but without any system disturbances. Sensor faults in the second subsystem are then formed as actuator faults by using a pseudo-actuator based approach. Since the effects of system disturbances on the residual are completely decoupled, multiple incipient sensor faults can be detected by constructing ToMFIR, and the fault detectability condition is then derived for discriminating the detectable incipient sensor faults. Further, a sliding-mode observers (SMOs) based fault isolation scheme is designed to guarantee accurate isolation of multiple sensor faults. Finally, simulation results conducted on a CRH2 high-speed railway traction device are given to demonstrate the effectiveness of the proposed approach. •A solution to multiple incipient fault detection and isolation was proposed.•Further results of ToMFIR residual were explored.•Practical applications on CRH2 high-speed train.</description><identifier>ISSN: 0019-0578</identifier><identifier>EISSN: 1879-2022</identifier><identifier>DOI: 10.1016/j.isatra.2016.12.001</identifier><identifier>PMID: 27993356</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>High-speed railway traction device ; Incipient fault diagnosis ; Nonlinear system ; Sensor bias ; Total measurable fault information residual (ToMFIR)</subject><ispartof>ISA transactions, 2017-03, Vol.67, p.183-192</ispartof><rights>2016 ISA</rights><rights>Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-2b24ba92fdbd0b24c0df7dbc2b4af3d460bb7d694d4073654c5968bc5ef4a6093</citedby><cites>FETCH-LOGICAL-c362t-2b24ba92fdbd0b24c0df7dbc2b4af3d460bb7d694d4073654c5968bc5ef4a6093</cites><orcidid>0000-0002-1156-2557</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.isatra.2016.12.001$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27928,27929,45999</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27993356$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, Yunkai</creatorcontrib><creatorcontrib>Jiang, Bin</creatorcontrib><creatorcontrib>Lu, Ningyun</creatorcontrib><creatorcontrib>Yang, Hao</creatorcontrib><creatorcontrib>Zhou, Yang</creatorcontrib><title>Multiple incipient sensor faults diagnosis with application to high-speed railway traction devices</title><title>ISA transactions</title><addtitle>ISA Trans</addtitle><description>This paper deals with the problem of incipient fault diagnosis for a class of Lipschitz nonlinear systems with sensor biases and explores further results of total measurable fault information residual (ToMFIR). Firstly, state and output transformations are introduced to transform the original system into two subsystems. The first subsystem is subject to system disturbances and free from sensor faults, while the second subsystem contains sensor faults but without any system disturbances. Sensor faults in the second subsystem are then formed as actuator faults by using a pseudo-actuator based approach. Since the effects of system disturbances on the residual are completely decoupled, multiple incipient sensor faults can be detected by constructing ToMFIR, and the fault detectability condition is then derived for discriminating the detectable incipient sensor faults. Further, a sliding-mode observers (SMOs) based fault isolation scheme is designed to guarantee accurate isolation of multiple sensor faults. Finally, simulation results conducted on a CRH2 high-speed railway traction device are given to demonstrate the effectiveness of the proposed approach. •A solution to multiple incipient fault detection and isolation was proposed.•Further results of ToMFIR residual were explored.•Practical applications on CRH2 high-speed train.</description><subject>High-speed railway traction device</subject><subject>Incipient fault diagnosis</subject><subject>Nonlinear system</subject><subject>Sensor bias</subject><subject>Total measurable fault information residual (ToMFIR)</subject><issn>0019-0578</issn><issn>1879-2022</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kMlOHDEQhi2UCIblDRDyMZfu2O7VFySEkoBElEtytrxUMzXq6W5cHhBvH8MAR061_bV9jJ1LUUoh2--bEsmmaEuVo1KqUgh5wFay73ShhFJf2CpndCGarj9ix0QbIYRqdH_IjlSndVU17Yq537sx4TICx8njgjAlTjDRHPlgc4l4QHs_zYTEnzCtuV2WEb1NOE88zXyN9-uCFoDAo8XxyT7zfJN_LQd4RA90yr4OdiQ4e7Mn7N_PH3-vb4q7P79ur6_uCl-1KhXKqdpZrYbggsi-F2HogvPK1XaoQt0K57rQ6jrUoqvapvaNbnvnGxhq2wpdnbBv-7lLnB92QMlskTyMo51g3pGRfSMrofq-y9J6L_VxJoowmCXi1sZnI4V5oWs2Zk_XvNA1UpnMMrddvG3YuS2Ej6Z3nFlwuRdA_vMRIRryGamHgBF8MmHGzzf8B8g-j7o</recordid><startdate>201703</startdate><enddate>201703</enddate><creator>Wu, Yunkai</creator><creator>Jiang, Bin</creator><creator>Lu, Ningyun</creator><creator>Yang, Hao</creator><creator>Zhou, Yang</creator><general>Elsevier Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1156-2557</orcidid></search><sort><creationdate>201703</creationdate><title>Multiple incipient sensor faults diagnosis with application to high-speed railway traction devices</title><author>Wu, Yunkai ; Jiang, Bin ; Lu, Ningyun ; Yang, Hao ; Zhou, Yang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-2b24ba92fdbd0b24c0df7dbc2b4af3d460bb7d694d4073654c5968bc5ef4a6093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>High-speed railway traction device</topic><topic>Incipient fault diagnosis</topic><topic>Nonlinear system</topic><topic>Sensor bias</topic><topic>Total measurable fault information residual (ToMFIR)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Yunkai</creatorcontrib><creatorcontrib>Jiang, Bin</creatorcontrib><creatorcontrib>Lu, Ningyun</creatorcontrib><creatorcontrib>Yang, Hao</creatorcontrib><creatorcontrib>Zhou, Yang</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ISA transactions</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Yunkai</au><au>Jiang, Bin</au><au>Lu, Ningyun</au><au>Yang, Hao</au><au>Zhou, Yang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiple incipient sensor faults diagnosis with application to high-speed railway traction devices</atitle><jtitle>ISA transactions</jtitle><addtitle>ISA Trans</addtitle><date>2017-03</date><risdate>2017</risdate><volume>67</volume><spage>183</spage><epage>192</epage><pages>183-192</pages><issn>0019-0578</issn><eissn>1879-2022</eissn><abstract>This paper deals with the problem of incipient fault diagnosis for a class of Lipschitz nonlinear systems with sensor biases and explores further results of total measurable fault information residual (ToMFIR). Firstly, state and output transformations are introduced to transform the original system into two subsystems. The first subsystem is subject to system disturbances and free from sensor faults, while the second subsystem contains sensor faults but without any system disturbances. Sensor faults in the second subsystem are then formed as actuator faults by using a pseudo-actuator based approach. Since the effects of system disturbances on the residual are completely decoupled, multiple incipient sensor faults can be detected by constructing ToMFIR, and the fault detectability condition is then derived for discriminating the detectable incipient sensor faults. Further, a sliding-mode observers (SMOs) based fault isolation scheme is designed to guarantee accurate isolation of multiple sensor faults. Finally, simulation results conducted on a CRH2 high-speed railway traction device are given to demonstrate the effectiveness of the proposed approach. •A solution to multiple incipient fault detection and isolation was proposed.•Further results of ToMFIR residual were explored.•Practical applications on CRH2 high-speed train.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>27993356</pmid><doi>10.1016/j.isatra.2016.12.001</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-1156-2557</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0019-0578
ispartof ISA transactions, 2017-03, Vol.67, p.183-192
issn 0019-0578
1879-2022
language eng
recordid cdi_proquest_miscellaneous_1851302887
source Elsevier ScienceDirect Journals Complete
subjects High-speed railway traction device
Incipient fault diagnosis
Nonlinear system
Sensor bias
Total measurable fault information residual (ToMFIR)
title Multiple incipient sensor faults diagnosis with application to high-speed railway traction devices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T06%3A59%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiple%20incipient%20sensor%20faults%20diagnosis%20with%20application%20to%20high-speed%20railway%20traction%20devices&rft.jtitle=ISA%20transactions&rft.au=Wu,%20Yunkai&rft.date=2017-03&rft.volume=67&rft.spage=183&rft.epage=192&rft.pages=183-192&rft.issn=0019-0578&rft.eissn=1879-2022&rft_id=info:doi/10.1016/j.isatra.2016.12.001&rft_dat=%3Cproquest_cross%3E1851302887%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1851302887&rft_id=info:pmid/27993356&rft_els_id=S0019057816308229&rfr_iscdi=true