Na2Ti3O7 Nanoplatelets and Nanosheets Derived from a Modified Exfoliation Process for Use as a High-Capacity Sodium-Ion Negative Electrode

The increasing interest in Na-ion batteries (NIBs) can be traced to sodium abundance, its low cost compared to lithium, and its intercalation chemistry being similar to that of lithium. We report that the electrochemical properties of a promising negative electrode material, Na2Ti3O7, are improved b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2017-01, Vol.9 (2), p.1416-1425
Hauptverfasser: Ko, Jesse S, Doan-Nguyen, Vicky V. T, Kim, Hyung-Seok, Muller, Guillaume A, Serino, Andrew C, Weiss, Paul S, Dunn, Bruce S
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1425
container_issue 2
container_start_page 1416
container_title ACS applied materials & interfaces
container_volume 9
creator Ko, Jesse S
Doan-Nguyen, Vicky V. T
Kim, Hyung-Seok
Muller, Guillaume A
Serino, Andrew C
Weiss, Paul S
Dunn, Bruce S
description The increasing interest in Na-ion batteries (NIBs) can be traced to sodium abundance, its low cost compared to lithium, and its intercalation chemistry being similar to that of lithium. We report that the electrochemical properties of a promising negative electrode material, Na2Ti3O7, are improved by exfoliating its layered structure and forming 2D nanoscale morphologies, nanoplatelets, and nanosheets. Exfoliation of Na2Ti3O7 was carried out by controlling the amount of proton exchange for Na+ and then proceeding with the intercalation of larger cations such as methylammonium and propylammonium. An optimized mixture of nanoplatelets and nanosheets exhibited the best electrochemical performance in terms of high capacities in the range of 100–150 mA h g–1 at high rates with stable cycling over several hundred cycles. These properties far exceed those of the corresponding bulk material, which is characterized by slow charge-storage kinetics and poor long-term stability. The results reported in this study demonstrate that charge-storage processes directed at 2D morphologies of surfaces and few layers of sheets are an exciting direction for improving the energy and power density of electrode materials for NIBs.
doi_str_mv 10.1021/acsami.6b10790
format Article
fullrecord <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_1851298793</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1851298793</sourcerecordid><originalsourceid>FETCH-LOGICAL-a263t-70a195eed3cc671ad2d8b58c90e82ac1d57912e10e0a5b0921d9d34f048600023</originalsourceid><addsrcrecordid>eNo9kE9PwkAQxRujiYhePe_RmBRnd_tvjwZRSBBMhHMz7E5hSelityX6FfzUFjGeZt7kvZfJLwhuOQw4CP6A2uPODpIVh1TBWdDjKorCTMTi_H-PosvgyvstQCIFxL3ge4ZiYeU8ZTOs3L7EhkpqPMPK_F78ho7yiWp7IMOK2u0YsldnbGE7PfosXGmxsa5ib7XT5D0rXM2Wnhh2LWxs15twiHvUtvli712u3YWTzj2jdRc7EBuVpJvaGboOLgosPd38zX6wfB4thuNwOn-ZDB-nIYpENmEKyFVMZKTWScrRCJOt4kwroEyg5iZOFRfEgQDjFSjBjTIyKiDKEgAQsh_cnXr3tftoyTf5znpNZYkVudbnPIu5UFmqZGe9P1k7tvnWtXXVPZZzyI_A8xPw_A-4_AGJMnUJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1851298793</pqid></control><display><type>article</type><title>Na2Ti3O7 Nanoplatelets and Nanosheets Derived from a Modified Exfoliation Process for Use as a High-Capacity Sodium-Ion Negative Electrode</title><source>ACS Publications</source><creator>Ko, Jesse S ; Doan-Nguyen, Vicky V. T ; Kim, Hyung-Seok ; Muller, Guillaume A ; Serino, Andrew C ; Weiss, Paul S ; Dunn, Bruce S</creator><creatorcontrib>Ko, Jesse S ; Doan-Nguyen, Vicky V. T ; Kim, Hyung-Seok ; Muller, Guillaume A ; Serino, Andrew C ; Weiss, Paul S ; Dunn, Bruce S</creatorcontrib><description>The increasing interest in Na-ion batteries (NIBs) can be traced to sodium abundance, its low cost compared to lithium, and its intercalation chemistry being similar to that of lithium. We report that the electrochemical properties of a promising negative electrode material, Na2Ti3O7, are improved by exfoliating its layered structure and forming 2D nanoscale morphologies, nanoplatelets, and nanosheets. Exfoliation of Na2Ti3O7 was carried out by controlling the amount of proton exchange for Na+ and then proceeding with the intercalation of larger cations such as methylammonium and propylammonium. An optimized mixture of nanoplatelets and nanosheets exhibited the best electrochemical performance in terms of high capacities in the range of 100–150 mA h g–1 at high rates with stable cycling over several hundred cycles. These properties far exceed those of the corresponding bulk material, which is characterized by slow charge-storage kinetics and poor long-term stability. The results reported in this study demonstrate that charge-storage processes directed at 2D morphologies of surfaces and few layers of sheets are an exciting direction for improving the energy and power density of electrode materials for NIBs.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.6b10790</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS applied materials &amp; interfaces, 2017-01, Vol.9 (2), p.1416-1425</ispartof><rights>Copyright © 2016 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-5527-6248 ; 0000-0003-4204-3271 ; 0000-0001-6965-4174</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.6b10790$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.6b10790$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Ko, Jesse S</creatorcontrib><creatorcontrib>Doan-Nguyen, Vicky V. T</creatorcontrib><creatorcontrib>Kim, Hyung-Seok</creatorcontrib><creatorcontrib>Muller, Guillaume A</creatorcontrib><creatorcontrib>Serino, Andrew C</creatorcontrib><creatorcontrib>Weiss, Paul S</creatorcontrib><creatorcontrib>Dunn, Bruce S</creatorcontrib><title>Na2Ti3O7 Nanoplatelets and Nanosheets Derived from a Modified Exfoliation Process for Use as a High-Capacity Sodium-Ion Negative Electrode</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>The increasing interest in Na-ion batteries (NIBs) can be traced to sodium abundance, its low cost compared to lithium, and its intercalation chemistry being similar to that of lithium. We report that the electrochemical properties of a promising negative electrode material, Na2Ti3O7, are improved by exfoliating its layered structure and forming 2D nanoscale morphologies, nanoplatelets, and nanosheets. Exfoliation of Na2Ti3O7 was carried out by controlling the amount of proton exchange for Na+ and then proceeding with the intercalation of larger cations such as methylammonium and propylammonium. An optimized mixture of nanoplatelets and nanosheets exhibited the best electrochemical performance in terms of high capacities in the range of 100–150 mA h g–1 at high rates with stable cycling over several hundred cycles. These properties far exceed those of the corresponding bulk material, which is characterized by slow charge-storage kinetics and poor long-term stability. The results reported in this study demonstrate that charge-storage processes directed at 2D morphologies of surfaces and few layers of sheets are an exciting direction for improving the energy and power density of electrode materials for NIBs.</description><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNo9kE9PwkAQxRujiYhePe_RmBRnd_tvjwZRSBBMhHMz7E5hSelityX6FfzUFjGeZt7kvZfJLwhuOQw4CP6A2uPODpIVh1TBWdDjKorCTMTi_H-PosvgyvstQCIFxL3ge4ZiYeU8ZTOs3L7EhkpqPMPK_F78ho7yiWp7IMOK2u0YsldnbGE7PfosXGmxsa5ib7XT5D0rXM2Wnhh2LWxs15twiHvUtvli712u3YWTzj2jdRc7EBuVpJvaGboOLgosPd38zX6wfB4thuNwOn-ZDB-nIYpENmEKyFVMZKTWScrRCJOt4kwroEyg5iZOFRfEgQDjFSjBjTIyKiDKEgAQsh_cnXr3tftoyTf5znpNZYkVudbnPIu5UFmqZGe9P1k7tvnWtXXVPZZzyI_A8xPw_A-4_AGJMnUJ</recordid><startdate>20170118</startdate><enddate>20170118</enddate><creator>Ko, Jesse S</creator><creator>Doan-Nguyen, Vicky V. T</creator><creator>Kim, Hyung-Seok</creator><creator>Muller, Guillaume A</creator><creator>Serino, Andrew C</creator><creator>Weiss, Paul S</creator><creator>Dunn, Bruce S</creator><general>American Chemical Society</general><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5527-6248</orcidid><orcidid>https://orcid.org/0000-0003-4204-3271</orcidid><orcidid>https://orcid.org/0000-0001-6965-4174</orcidid></search><sort><creationdate>20170118</creationdate><title>Na2Ti3O7 Nanoplatelets and Nanosheets Derived from a Modified Exfoliation Process for Use as a High-Capacity Sodium-Ion Negative Electrode</title><author>Ko, Jesse S ; Doan-Nguyen, Vicky V. T ; Kim, Hyung-Seok ; Muller, Guillaume A ; Serino, Andrew C ; Weiss, Paul S ; Dunn, Bruce S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a263t-70a195eed3cc671ad2d8b58c90e82ac1d57912e10e0a5b0921d9d34f048600023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ko, Jesse S</creatorcontrib><creatorcontrib>Doan-Nguyen, Vicky V. T</creatorcontrib><creatorcontrib>Kim, Hyung-Seok</creatorcontrib><creatorcontrib>Muller, Guillaume A</creatorcontrib><creatorcontrib>Serino, Andrew C</creatorcontrib><creatorcontrib>Weiss, Paul S</creatorcontrib><creatorcontrib>Dunn, Bruce S</creatorcontrib><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ko, Jesse S</au><au>Doan-Nguyen, Vicky V. T</au><au>Kim, Hyung-Seok</au><au>Muller, Guillaume A</au><au>Serino, Andrew C</au><au>Weiss, Paul S</au><au>Dunn, Bruce S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Na2Ti3O7 Nanoplatelets and Nanosheets Derived from a Modified Exfoliation Process for Use as a High-Capacity Sodium-Ion Negative Electrode</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2017-01-18</date><risdate>2017</risdate><volume>9</volume><issue>2</issue><spage>1416</spage><epage>1425</epage><pages>1416-1425</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>The increasing interest in Na-ion batteries (NIBs) can be traced to sodium abundance, its low cost compared to lithium, and its intercalation chemistry being similar to that of lithium. We report that the electrochemical properties of a promising negative electrode material, Na2Ti3O7, are improved by exfoliating its layered structure and forming 2D nanoscale morphologies, nanoplatelets, and nanosheets. Exfoliation of Na2Ti3O7 was carried out by controlling the amount of proton exchange for Na+ and then proceeding with the intercalation of larger cations such as methylammonium and propylammonium. An optimized mixture of nanoplatelets and nanosheets exhibited the best electrochemical performance in terms of high capacities in the range of 100–150 mA h g–1 at high rates with stable cycling over several hundred cycles. These properties far exceed those of the corresponding bulk material, which is characterized by slow charge-storage kinetics and poor long-term stability. The results reported in this study demonstrate that charge-storage processes directed at 2D morphologies of surfaces and few layers of sheets are an exciting direction for improving the energy and power density of electrode materials for NIBs.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsami.6b10790</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-5527-6248</orcidid><orcidid>https://orcid.org/0000-0003-4204-3271</orcidid><orcidid>https://orcid.org/0000-0001-6965-4174</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2017-01, Vol.9 (2), p.1416-1425
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_1851298793
source ACS Publications
title Na2Ti3O7 Nanoplatelets and Nanosheets Derived from a Modified Exfoliation Process for Use as a High-Capacity Sodium-Ion Negative Electrode
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T04%3A42%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Na2Ti3O7%20Nanoplatelets%20and%20Nanosheets%20Derived%20from%20a%20Modified%20Exfoliation%20Process%20for%20Use%20as%20a%20High-Capacity%20Sodium-Ion%20Negative%20Electrode&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Ko,%20Jesse%20S&rft.date=2017-01-18&rft.volume=9&rft.issue=2&rft.spage=1416&rft.epage=1425&rft.pages=1416-1425&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.6b10790&rft_dat=%3Cproquest_acs_j%3E1851298793%3C/proquest_acs_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1851298793&rft_id=info:pmid/&rfr_iscdi=true