Graded Structural Polymorphism in a Bacterial Thermosensor Protein

Thermosensing is critical for the expression of virulence genes in pathogenic bacteria that infect warm-blooded hosts. Proteins of the Hha-family, conserved among entero­bacteriaceae, have been implicated in dynamically regulating the expression of a large number of genes upon temperature shifts. Ho...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2017-01, Vol.139 (2), p.792-802
Hauptverfasser: Narayan, Abhishek, Campos, Luis A, Bhatia, Sandhya, Fushman, David, Naganathan, Athi N
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 802
container_issue 2
container_start_page 792
container_title Journal of the American Chemical Society
container_volume 139
creator Narayan, Abhishek
Campos, Luis A
Bhatia, Sandhya
Fushman, David
Naganathan, Athi N
description Thermosensing is critical for the expression of virulence genes in pathogenic bacteria that infect warm-blooded hosts. Proteins of the Hha-family, conserved among entero­bacteriaceae, have been implicated in dynamically regulating the expression of a large number of genes upon temperature shifts. However, there is little mechanistic evidence at the molecular level as to how changes in temperature are transduced into structural changes and hence the functional outcome. In this study, we delineate the conformational behavior of Cnu, a putative molecular thermosensor, employing diverse spectroscopic, calorimetric and hydrodynamic measurements. We find that Cnu displays probe-dependent unfolding in equilibrium, graded increase in structural fluctuations and temperature-dependent swelling of the dimensions of its native ensemble within the physiological range of temperatures, features that are indicative of a highly malleable native ensemble. Site-specific fluorescence and NMR experiments in combination with multiple computational approachesstatistical mechanical model, coarse-grained and all-atom MD simulationsreveal that the fourth helix of Cnu acts as a unique thermosensing module displaying varying degrees of order and orientation in response to temperature modulations while undergoing a continuous unfolding transition. Our combined experimental–computational study unravels the folding-functional landscape of a natural thermosensor protein, the molecular origins of its unfolding complexity, highlights the role of functional constraints in determining folding-mechanistic behaviors, and the design principles orchestrating the signal transduction roles of the Hha protein family.
doi_str_mv 10.1021/jacs.6b10608
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1851293683</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1851293683</sourcerecordid><originalsourceid>FETCH-LOGICAL-a427t-8888762578c76e58f03724c56734c4b4c8c796c125fc8bbd84a82e732e7f46dc3</originalsourceid><addsrcrecordid>eNptUE1PwzAMjRCIjcGNM-qRAx35apIe2QQDaRKTGOcoTVOtU9sMpz3s35NpAy5Ysizbz896D6FbgqcEU_K4NTZMRUGwwOoMjUlGcZoRKs7RGGNMU6kEG6GrELax5VSRSzSiMs-JVHiMZgswpSuTjx4G2w9gmmTlm33rYbepQ5vUXWKSmbG9gzru1hsHrQ-uCx6SFfje1d01uqhME9zNqU7Q58vzev6aLt8Xb_OnZWo4lX2qYkhBM6msFC5TFWaScpsJybjlBbdxngtLaFZZVRSl4kZRJ1nMiovSsgm6P_LuwH8NLvS6rYN1TWM654egiYqycyYUi9CHI9SCDwFcpXdQtwb2mmB9cE0fXNMn1yL87sQ8FK0rf8E_Nv29Plxt_QBdFPo_1zdF93S9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1851293683</pqid></control><display><type>article</type><title>Graded Structural Polymorphism in a Bacterial Thermosensor Protein</title><source>ACS Publications</source><source>MEDLINE</source><creator>Narayan, Abhishek ; Campos, Luis A ; Bhatia, Sandhya ; Fushman, David ; Naganathan, Athi N</creator><creatorcontrib>Narayan, Abhishek ; Campos, Luis A ; Bhatia, Sandhya ; Fushman, David ; Naganathan, Athi N</creatorcontrib><description>Thermosensing is critical for the expression of virulence genes in pathogenic bacteria that infect warm-blooded hosts. Proteins of the Hha-family, conserved among entero­bacteriaceae, have been implicated in dynamically regulating the expression of a large number of genes upon temperature shifts. However, there is little mechanistic evidence at the molecular level as to how changes in temperature are transduced into structural changes and hence the functional outcome. In this study, we delineate the conformational behavior of Cnu, a putative molecular thermosensor, employing diverse spectroscopic, calorimetric and hydrodynamic measurements. We find that Cnu displays probe-dependent unfolding in equilibrium, graded increase in structural fluctuations and temperature-dependent swelling of the dimensions of its native ensemble within the physiological range of temperatures, features that are indicative of a highly malleable native ensemble. Site-specific fluorescence and NMR experiments in combination with multiple computational approachesstatistical mechanical model, coarse-grained and all-atom MD simulationsreveal that the fourth helix of Cnu acts as a unique thermosensing module displaying varying degrees of order and orientation in response to temperature modulations while undergoing a continuous unfolding transition. Our combined experimental–computational study unravels the folding-functional landscape of a natural thermosensor protein, the molecular origins of its unfolding complexity, highlights the role of functional constraints in determining folding-mechanistic behaviors, and the design principles orchestrating the signal transduction roles of the Hha protein family.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.6b10608</identifier><identifier>PMID: 27991780</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Bacterial Proteins - chemistry ; DNA-Binding Proteins - chemistry ; Escherichia coli Proteins - chemistry ; Models, Biological ; Protein Conformation ; Temperature ; Thermodynamics</subject><ispartof>Journal of the American Chemical Society, 2017-01, Vol.139 (2), p.792-802</ispartof><rights>Copyright © 2016 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a427t-8888762578c76e58f03724c56734c4b4c8c796c125fc8bbd84a82e732e7f46dc3</citedby><cites>FETCH-LOGICAL-a427t-8888762578c76e58f03724c56734c4b4c8c796c125fc8bbd84a82e732e7f46dc3</cites><orcidid>0000-0002-1655-7802</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jacs.6b10608$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jacs.6b10608$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27991780$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Narayan, Abhishek</creatorcontrib><creatorcontrib>Campos, Luis A</creatorcontrib><creatorcontrib>Bhatia, Sandhya</creatorcontrib><creatorcontrib>Fushman, David</creatorcontrib><creatorcontrib>Naganathan, Athi N</creatorcontrib><title>Graded Structural Polymorphism in a Bacterial Thermosensor Protein</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>Thermosensing is critical for the expression of virulence genes in pathogenic bacteria that infect warm-blooded hosts. Proteins of the Hha-family, conserved among entero­bacteriaceae, have been implicated in dynamically regulating the expression of a large number of genes upon temperature shifts. However, there is little mechanistic evidence at the molecular level as to how changes in temperature are transduced into structural changes and hence the functional outcome. In this study, we delineate the conformational behavior of Cnu, a putative molecular thermosensor, employing diverse spectroscopic, calorimetric and hydrodynamic measurements. We find that Cnu displays probe-dependent unfolding in equilibrium, graded increase in structural fluctuations and temperature-dependent swelling of the dimensions of its native ensemble within the physiological range of temperatures, features that are indicative of a highly malleable native ensemble. Site-specific fluorescence and NMR experiments in combination with multiple computational approachesstatistical mechanical model, coarse-grained and all-atom MD simulationsreveal that the fourth helix of Cnu acts as a unique thermosensing module displaying varying degrees of order and orientation in response to temperature modulations while undergoing a continuous unfolding transition. Our combined experimental–computational study unravels the folding-functional landscape of a natural thermosensor protein, the molecular origins of its unfolding complexity, highlights the role of functional constraints in determining folding-mechanistic behaviors, and the design principles orchestrating the signal transduction roles of the Hha protein family.</description><subject>Bacterial Proteins - chemistry</subject><subject>DNA-Binding Proteins - chemistry</subject><subject>Escherichia coli Proteins - chemistry</subject><subject>Models, Biological</subject><subject>Protein Conformation</subject><subject>Temperature</subject><subject>Thermodynamics</subject><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptUE1PwzAMjRCIjcGNM-qRAx35apIe2QQDaRKTGOcoTVOtU9sMpz3s35NpAy5Ysizbz896D6FbgqcEU_K4NTZMRUGwwOoMjUlGcZoRKs7RGGNMU6kEG6GrELax5VSRSzSiMs-JVHiMZgswpSuTjx4G2w9gmmTlm33rYbepQ5vUXWKSmbG9gzru1hsHrQ-uCx6SFfje1d01uqhME9zNqU7Q58vzev6aLt8Xb_OnZWo4lX2qYkhBM6msFC5TFWaScpsJybjlBbdxngtLaFZZVRSl4kZRJ1nMiovSsgm6P_LuwH8NLvS6rYN1TWM654egiYqycyYUi9CHI9SCDwFcpXdQtwb2mmB9cE0fXNMn1yL87sQ8FK0rf8E_Nv29Plxt_QBdFPo_1zdF93S9</recordid><startdate>20170118</startdate><enddate>20170118</enddate><creator>Narayan, Abhishek</creator><creator>Campos, Luis A</creator><creator>Bhatia, Sandhya</creator><creator>Fushman, David</creator><creator>Naganathan, Athi N</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1655-7802</orcidid></search><sort><creationdate>20170118</creationdate><title>Graded Structural Polymorphism in a Bacterial Thermosensor Protein</title><author>Narayan, Abhishek ; Campos, Luis A ; Bhatia, Sandhya ; Fushman, David ; Naganathan, Athi N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a427t-8888762578c76e58f03724c56734c4b4c8c796c125fc8bbd84a82e732e7f46dc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Bacterial Proteins - chemistry</topic><topic>DNA-Binding Proteins - chemistry</topic><topic>Escherichia coli Proteins - chemistry</topic><topic>Models, Biological</topic><topic>Protein Conformation</topic><topic>Temperature</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Narayan, Abhishek</creatorcontrib><creatorcontrib>Campos, Luis A</creatorcontrib><creatorcontrib>Bhatia, Sandhya</creatorcontrib><creatorcontrib>Fushman, David</creatorcontrib><creatorcontrib>Naganathan, Athi N</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Narayan, Abhishek</au><au>Campos, Luis A</au><au>Bhatia, Sandhya</au><au>Fushman, David</au><au>Naganathan, Athi N</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Graded Structural Polymorphism in a Bacterial Thermosensor Protein</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2017-01-18</date><risdate>2017</risdate><volume>139</volume><issue>2</issue><spage>792</spage><epage>802</epage><pages>792-802</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>Thermosensing is critical for the expression of virulence genes in pathogenic bacteria that infect warm-blooded hosts. Proteins of the Hha-family, conserved among entero­bacteriaceae, have been implicated in dynamically regulating the expression of a large number of genes upon temperature shifts. However, there is little mechanistic evidence at the molecular level as to how changes in temperature are transduced into structural changes and hence the functional outcome. In this study, we delineate the conformational behavior of Cnu, a putative molecular thermosensor, employing diverse spectroscopic, calorimetric and hydrodynamic measurements. We find that Cnu displays probe-dependent unfolding in equilibrium, graded increase in structural fluctuations and temperature-dependent swelling of the dimensions of its native ensemble within the physiological range of temperatures, features that are indicative of a highly malleable native ensemble. Site-specific fluorescence and NMR experiments in combination with multiple computational approachesstatistical mechanical model, coarse-grained and all-atom MD simulationsreveal that the fourth helix of Cnu acts as a unique thermosensing module displaying varying degrees of order and orientation in response to temperature modulations while undergoing a continuous unfolding transition. Our combined experimental–computational study unravels the folding-functional landscape of a natural thermosensor protein, the molecular origins of its unfolding complexity, highlights the role of functional constraints in determining folding-mechanistic behaviors, and the design principles orchestrating the signal transduction roles of the Hha protein family.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>27991780</pmid><doi>10.1021/jacs.6b10608</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-1655-7802</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2017-01, Vol.139 (2), p.792-802
issn 0002-7863
1520-5126
language eng
recordid cdi_proquest_miscellaneous_1851293683
source ACS Publications; MEDLINE
subjects Bacterial Proteins - chemistry
DNA-Binding Proteins - chemistry
Escherichia coli Proteins - chemistry
Models, Biological
Protein Conformation
Temperature
Thermodynamics
title Graded Structural Polymorphism in a Bacterial Thermosensor Protein
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T10%3A32%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Graded%20Structural%20Polymorphism%20in%20a%20Bacterial%20Thermosensor%20Protein&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Narayan,%20Abhishek&rft.date=2017-01-18&rft.volume=139&rft.issue=2&rft.spage=792&rft.epage=802&rft.pages=792-802&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.6b10608&rft_dat=%3Cproquest_cross%3E1851293683%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1851293683&rft_id=info:pmid/27991780&rfr_iscdi=true