Graded Structural Polymorphism in a Bacterial Thermosensor Protein
Thermosensing is critical for the expression of virulence genes in pathogenic bacteria that infect warm-blooded hosts. Proteins of the Hha-family, conserved among enterobacteriaceae, have been implicated in dynamically regulating the expression of a large number of genes upon temperature shifts. Ho...
Gespeichert in:
Veröffentlicht in: | Journal of the American Chemical Society 2017-01, Vol.139 (2), p.792-802 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 802 |
---|---|
container_issue | 2 |
container_start_page | 792 |
container_title | Journal of the American Chemical Society |
container_volume | 139 |
creator | Narayan, Abhishek Campos, Luis A Bhatia, Sandhya Fushman, David Naganathan, Athi N |
description | Thermosensing is critical for the expression of virulence genes in pathogenic bacteria that infect warm-blooded hosts. Proteins of the Hha-family, conserved among enterobacteriaceae, have been implicated in dynamically regulating the expression of a large number of genes upon temperature shifts. However, there is little mechanistic evidence at the molecular level as to how changes in temperature are transduced into structural changes and hence the functional outcome. In this study, we delineate the conformational behavior of Cnu, a putative molecular thermosensor, employing diverse spectroscopic, calorimetric and hydrodynamic measurements. We find that Cnu displays probe-dependent unfolding in equilibrium, graded increase in structural fluctuations and temperature-dependent swelling of the dimensions of its native ensemble within the physiological range of temperatures, features that are indicative of a highly malleable native ensemble. Site-specific fluorescence and NMR experiments in combination with multiple computational approachesstatistical mechanical model, coarse-grained and all-atom MD simulationsreveal that the fourth helix of Cnu acts as a unique thermosensing module displaying varying degrees of order and orientation in response to temperature modulations while undergoing a continuous unfolding transition. Our combined experimental–computational study unravels the folding-functional landscape of a natural thermosensor protein, the molecular origins of its unfolding complexity, highlights the role of functional constraints in determining folding-mechanistic behaviors, and the design principles orchestrating the signal transduction roles of the Hha protein family. |
doi_str_mv | 10.1021/jacs.6b10608 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1851293683</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1851293683</sourcerecordid><originalsourceid>FETCH-LOGICAL-a427t-8888762578c76e58f03724c56734c4b4c8c796c125fc8bbd84a82e732e7f46dc3</originalsourceid><addsrcrecordid>eNptUE1PwzAMjRCIjcGNM-qRAx35apIe2QQDaRKTGOcoTVOtU9sMpz3s35NpAy5Ysizbz896D6FbgqcEU_K4NTZMRUGwwOoMjUlGcZoRKs7RGGNMU6kEG6GrELax5VSRSzSiMs-JVHiMZgswpSuTjx4G2w9gmmTlm33rYbepQ5vUXWKSmbG9gzru1hsHrQ-uCx6SFfje1d01uqhME9zNqU7Q58vzev6aLt8Xb_OnZWo4lX2qYkhBM6msFC5TFWaScpsJybjlBbdxngtLaFZZVRSl4kZRJ1nMiovSsgm6P_LuwH8NLvS6rYN1TWM654egiYqycyYUi9CHI9SCDwFcpXdQtwb2mmB9cE0fXNMn1yL87sQ8FK0rf8E_Nv29Plxt_QBdFPo_1zdF93S9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1851293683</pqid></control><display><type>article</type><title>Graded Structural Polymorphism in a Bacterial Thermosensor Protein</title><source>ACS Publications</source><source>MEDLINE</source><creator>Narayan, Abhishek ; Campos, Luis A ; Bhatia, Sandhya ; Fushman, David ; Naganathan, Athi N</creator><creatorcontrib>Narayan, Abhishek ; Campos, Luis A ; Bhatia, Sandhya ; Fushman, David ; Naganathan, Athi N</creatorcontrib><description>Thermosensing is critical for the expression of virulence genes in pathogenic bacteria that infect warm-blooded hosts. Proteins of the Hha-family, conserved among enterobacteriaceae, have been implicated in dynamically regulating the expression of a large number of genes upon temperature shifts. However, there is little mechanistic evidence at the molecular level as to how changes in temperature are transduced into structural changes and hence the functional outcome. In this study, we delineate the conformational behavior of Cnu, a putative molecular thermosensor, employing diverse spectroscopic, calorimetric and hydrodynamic measurements. We find that Cnu displays probe-dependent unfolding in equilibrium, graded increase in structural fluctuations and temperature-dependent swelling of the dimensions of its native ensemble within the physiological range of temperatures, features that are indicative of a highly malleable native ensemble. Site-specific fluorescence and NMR experiments in combination with multiple computational approachesstatistical mechanical model, coarse-grained and all-atom MD simulationsreveal that the fourth helix of Cnu acts as a unique thermosensing module displaying varying degrees of order and orientation in response to temperature modulations while undergoing a continuous unfolding transition. Our combined experimental–computational study unravels the folding-functional landscape of a natural thermosensor protein, the molecular origins of its unfolding complexity, highlights the role of functional constraints in determining folding-mechanistic behaviors, and the design principles orchestrating the signal transduction roles of the Hha protein family.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.6b10608</identifier><identifier>PMID: 27991780</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Bacterial Proteins - chemistry ; DNA-Binding Proteins - chemistry ; Escherichia coli Proteins - chemistry ; Models, Biological ; Protein Conformation ; Temperature ; Thermodynamics</subject><ispartof>Journal of the American Chemical Society, 2017-01, Vol.139 (2), p.792-802</ispartof><rights>Copyright © 2016 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a427t-8888762578c76e58f03724c56734c4b4c8c796c125fc8bbd84a82e732e7f46dc3</citedby><cites>FETCH-LOGICAL-a427t-8888762578c76e58f03724c56734c4b4c8c796c125fc8bbd84a82e732e7f46dc3</cites><orcidid>0000-0002-1655-7802</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jacs.6b10608$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jacs.6b10608$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27991780$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Narayan, Abhishek</creatorcontrib><creatorcontrib>Campos, Luis A</creatorcontrib><creatorcontrib>Bhatia, Sandhya</creatorcontrib><creatorcontrib>Fushman, David</creatorcontrib><creatorcontrib>Naganathan, Athi N</creatorcontrib><title>Graded Structural Polymorphism in a Bacterial Thermosensor Protein</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>Thermosensing is critical for the expression of virulence genes in pathogenic bacteria that infect warm-blooded hosts. Proteins of the Hha-family, conserved among enterobacteriaceae, have been implicated in dynamically regulating the expression of a large number of genes upon temperature shifts. However, there is little mechanistic evidence at the molecular level as to how changes in temperature are transduced into structural changes and hence the functional outcome. In this study, we delineate the conformational behavior of Cnu, a putative molecular thermosensor, employing diverse spectroscopic, calorimetric and hydrodynamic measurements. We find that Cnu displays probe-dependent unfolding in equilibrium, graded increase in structural fluctuations and temperature-dependent swelling of the dimensions of its native ensemble within the physiological range of temperatures, features that are indicative of a highly malleable native ensemble. Site-specific fluorescence and NMR experiments in combination with multiple computational approachesstatistical mechanical model, coarse-grained and all-atom MD simulationsreveal that the fourth helix of Cnu acts as a unique thermosensing module displaying varying degrees of order and orientation in response to temperature modulations while undergoing a continuous unfolding transition. Our combined experimental–computational study unravels the folding-functional landscape of a natural thermosensor protein, the molecular origins of its unfolding complexity, highlights the role of functional constraints in determining folding-mechanistic behaviors, and the design principles orchestrating the signal transduction roles of the Hha protein family.</description><subject>Bacterial Proteins - chemistry</subject><subject>DNA-Binding Proteins - chemistry</subject><subject>Escherichia coli Proteins - chemistry</subject><subject>Models, Biological</subject><subject>Protein Conformation</subject><subject>Temperature</subject><subject>Thermodynamics</subject><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptUE1PwzAMjRCIjcGNM-qRAx35apIe2QQDaRKTGOcoTVOtU9sMpz3s35NpAy5Ysizbz896D6FbgqcEU_K4NTZMRUGwwOoMjUlGcZoRKs7RGGNMU6kEG6GrELax5VSRSzSiMs-JVHiMZgswpSuTjx4G2w9gmmTlm33rYbepQ5vUXWKSmbG9gzru1hsHrQ-uCx6SFfje1d01uqhME9zNqU7Q58vzev6aLt8Xb_OnZWo4lX2qYkhBM6msFC5TFWaScpsJybjlBbdxngtLaFZZVRSl4kZRJ1nMiovSsgm6P_LuwH8NLvS6rYN1TWM654egiYqycyYUi9CHI9SCDwFcpXdQtwb2mmB9cE0fXNMn1yL87sQ8FK0rf8E_Nv29Plxt_QBdFPo_1zdF93S9</recordid><startdate>20170118</startdate><enddate>20170118</enddate><creator>Narayan, Abhishek</creator><creator>Campos, Luis A</creator><creator>Bhatia, Sandhya</creator><creator>Fushman, David</creator><creator>Naganathan, Athi N</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1655-7802</orcidid></search><sort><creationdate>20170118</creationdate><title>Graded Structural Polymorphism in a Bacterial Thermosensor Protein</title><author>Narayan, Abhishek ; Campos, Luis A ; Bhatia, Sandhya ; Fushman, David ; Naganathan, Athi N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a427t-8888762578c76e58f03724c56734c4b4c8c796c125fc8bbd84a82e732e7f46dc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Bacterial Proteins - chemistry</topic><topic>DNA-Binding Proteins - chemistry</topic><topic>Escherichia coli Proteins - chemistry</topic><topic>Models, Biological</topic><topic>Protein Conformation</topic><topic>Temperature</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Narayan, Abhishek</creatorcontrib><creatorcontrib>Campos, Luis A</creatorcontrib><creatorcontrib>Bhatia, Sandhya</creatorcontrib><creatorcontrib>Fushman, David</creatorcontrib><creatorcontrib>Naganathan, Athi N</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Narayan, Abhishek</au><au>Campos, Luis A</au><au>Bhatia, Sandhya</au><au>Fushman, David</au><au>Naganathan, Athi N</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Graded Structural Polymorphism in a Bacterial Thermosensor Protein</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2017-01-18</date><risdate>2017</risdate><volume>139</volume><issue>2</issue><spage>792</spage><epage>802</epage><pages>792-802</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>Thermosensing is critical for the expression of virulence genes in pathogenic bacteria that infect warm-blooded hosts. Proteins of the Hha-family, conserved among enterobacteriaceae, have been implicated in dynamically regulating the expression of a large number of genes upon temperature shifts. However, there is little mechanistic evidence at the molecular level as to how changes in temperature are transduced into structural changes and hence the functional outcome. In this study, we delineate the conformational behavior of Cnu, a putative molecular thermosensor, employing diverse spectroscopic, calorimetric and hydrodynamic measurements. We find that Cnu displays probe-dependent unfolding in equilibrium, graded increase in structural fluctuations and temperature-dependent swelling of the dimensions of its native ensemble within the physiological range of temperatures, features that are indicative of a highly malleable native ensemble. Site-specific fluorescence and NMR experiments in combination with multiple computational approachesstatistical mechanical model, coarse-grained and all-atom MD simulationsreveal that the fourth helix of Cnu acts as a unique thermosensing module displaying varying degrees of order and orientation in response to temperature modulations while undergoing a continuous unfolding transition. Our combined experimental–computational study unravels the folding-functional landscape of a natural thermosensor protein, the molecular origins of its unfolding complexity, highlights the role of functional constraints in determining folding-mechanistic behaviors, and the design principles orchestrating the signal transduction roles of the Hha protein family.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>27991780</pmid><doi>10.1021/jacs.6b10608</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-1655-7802</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-7863 |
ispartof | Journal of the American Chemical Society, 2017-01, Vol.139 (2), p.792-802 |
issn | 0002-7863 1520-5126 |
language | eng |
recordid | cdi_proquest_miscellaneous_1851293683 |
source | ACS Publications; MEDLINE |
subjects | Bacterial Proteins - chemistry DNA-Binding Proteins - chemistry Escherichia coli Proteins - chemistry Models, Biological Protein Conformation Temperature Thermodynamics |
title | Graded Structural Polymorphism in a Bacterial Thermosensor Protein |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T10%3A32%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Graded%20Structural%20Polymorphism%20in%20a%20Bacterial%20Thermosensor%20Protein&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Narayan,%20Abhishek&rft.date=2017-01-18&rft.volume=139&rft.issue=2&rft.spage=792&rft.epage=802&rft.pages=792-802&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.6b10608&rft_dat=%3Cproquest_cross%3E1851293683%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1851293683&rft_id=info:pmid/27991780&rfr_iscdi=true |