Autonomous Metabolic Oscillations Robustly Gate the Early and Late Cell Cycle

Eukaryotic cell division is known to be controlled by the cyclin/cyclin dependent kinase (CDK) machinery. However, eukaryotes have evolved prior to CDKs, and cells can divide in the absence of major cyclin/CDK components. We hypothesized that an autonomous metabolic oscillator provides dynamic trigg...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular cell 2017-01, Vol.65 (2), p.285-295
Hauptverfasser: Papagiannakis, Alexandros, Niebel, Bastian, Wit, Ernst C., Heinemann, Matthias
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 295
container_issue 2
container_start_page 285
container_title Molecular cell
container_volume 65
creator Papagiannakis, Alexandros
Niebel, Bastian
Wit, Ernst C.
Heinemann, Matthias
description Eukaryotic cell division is known to be controlled by the cyclin/cyclin dependent kinase (CDK) machinery. However, eukaryotes have evolved prior to CDKs, and cells can divide in the absence of major cyclin/CDK components. We hypothesized that an autonomous metabolic oscillator provides dynamic triggers for cell-cycle initiation and progression. Using microfluidics, cell-cycle reporters, and single-cell metabolite measurements, we found that metabolism of budding yeast is a CDK-independent oscillator that oscillates across different growth conditions, both in synchrony with and also in the absence of the cell cycle. Using environmental perturbations and dynamic single-protein depletion experiments, we found that the metabolic oscillator and the cell cycle form a system of coupled oscillators, with the metabolic oscillator separately gating and maintaining synchrony with the early and late cell cycle. Establishing metabolism as a dynamic component within the cell-cycle network opens new avenues for cell-cycle research and therapeutic interventions for proliferative disorders. [Display omitted] •Metabolic cycles are an intrinsic, growth-condition-independent behavior of single cells•The metabolic oscillations are not the result of the cell cycle and thus are autonomous•The metabolic oscillator and the cyclin/CDK machinery form a system of coupled oscillators•Both the early and late cell cycle operate in coordination with the metabolic oscillator Papagiannakis et al. performed metabolite and cell-cycle measurements in single cells to show that the cell cycle is a higher-order function, which emerges from the collective synchrony between an autonomous metabolic oscillator, a biomass formation oscillator (early cell cycle), and a biomass segregation oscillator (late cell cycle).
doi_str_mv 10.1016/j.molcel.2016.11.018
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1851292866</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1097276516307262</els_id><sourcerecordid>1851292866</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-bf1b3ba693a3c1e22fa8dcbdc6724c49aafd6a9d3ab53b7130ac64ea4cfbd7923</originalsourceid><addsrcrecordid>eNp9kE-L2zAQxUVp2T_pfoNSfOwlrkdWZOtSCCGbLWRZWLZnMZLG1EG2tpZcyLdfhaR77GnmDe_NMD_GvkBVQgXy-6EcgrfkS55VCVBW0H5gN1CpZilAio-Xnjdydc1uYzxUFYhVq67YNW9Uq4SAG_a4nlMYwxDmWDxSQhN8b4unaHvvMfVhjMVzMHNM_ljsMFGRflOxxSlLHF2xP4025H2xOVpPn9mnDn2ku0tdsF_325fNw3L_tPu5We-XVjQiLU0HpjYoVY21BeK8w9ZZ46xsuLBCIXZOonI1mlVtGqgrtFIQCtsZ1yheL9i3897XKfyZKSY99DGz8DhS_kRDuwKueCtltoqz1U4hxok6_Tr1A05HDZU-gdQHfQapTyA1gM4gc-zr5cJsBnLvoX_ksuHH2UD5z789TTozo9GS6yeySbvQ___CG1nQhzg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1851292866</pqid></control><display><type>article</type><title>Autonomous Metabolic Oscillations Robustly Gate the Early and Late Cell Cycle</title><source>ScienceDirect</source><source>MEDLINE</source><source>Full-Text Journals in Chemistry (Open access)</source><source>EZB Free E-Journals</source><source>Cell Press Free Archives</source><creator>Papagiannakis, Alexandros ; Niebel, Bastian ; Wit, Ernst C. ; Heinemann, Matthias</creator><creatorcontrib>Papagiannakis, Alexandros ; Niebel, Bastian ; Wit, Ernst C. ; Heinemann, Matthias</creatorcontrib><description>Eukaryotic cell division is known to be controlled by the cyclin/cyclin dependent kinase (CDK) machinery. However, eukaryotes have evolved prior to CDKs, and cells can divide in the absence of major cyclin/CDK components. We hypothesized that an autonomous metabolic oscillator provides dynamic triggers for cell-cycle initiation and progression. Using microfluidics, cell-cycle reporters, and single-cell metabolite measurements, we found that metabolism of budding yeast is a CDK-independent oscillator that oscillates across different growth conditions, both in synchrony with and also in the absence of the cell cycle. Using environmental perturbations and dynamic single-protein depletion experiments, we found that the metabolic oscillator and the cell cycle form a system of coupled oscillators, with the metabolic oscillator separately gating and maintaining synchrony with the early and late cell cycle. Establishing metabolism as a dynamic component within the cell-cycle network opens new avenues for cell-cycle research and therapeutic interventions for proliferative disorders. [Display omitted] •Metabolic cycles are an intrinsic, growth-condition-independent behavior of single cells•The metabolic oscillations are not the result of the cell cycle and thus are autonomous•The metabolic oscillator and the cyclin/CDK machinery form a system of coupled oscillators•Both the early and late cell cycle operate in coordination with the metabolic oscillator Papagiannakis et al. performed metabolite and cell-cycle measurements in single cells to show that the cell cycle is a higher-order function, which emerges from the collective synchrony between an autonomous metabolic oscillator, a biomass formation oscillator (early cell cycle), and a biomass segregation oscillator (late cell cycle).</description><identifier>ISSN: 1097-2765</identifier><identifier>EISSN: 1097-4164</identifier><identifier>DOI: 10.1016/j.molcel.2016.11.018</identifier><identifier>PMID: 27989441</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Adenosine Triphosphate - metabolism ; Cell Cycle ; coupled oscillators ; Cyclin-Dependent Kinases - genetics ; Cyclin-Dependent Kinases - metabolism ; cyclin/CDK machinery ; Energy Metabolism ; FRET sensor ; Genotype ; metabolic oscillations ; microfluidics ; Microscopy, Fluorescence ; Microscopy, Video ; Models, Biological ; Mutation ; NAD(P)H ; NADP - metabolism ; Oscillometry ; Periodicity ; Phenotype ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - growth &amp; development ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - metabolism ; single cell ; Time Factors ; yeast metabolic cycle</subject><ispartof>Molecular cell, 2017-01, Vol.65 (2), p.285-295</ispartof><rights>2017 Elsevier Inc.</rights><rights>Copyright © 2017 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-bf1b3ba693a3c1e22fa8dcbdc6724c49aafd6a9d3ab53b7130ac64ea4cfbd7923</citedby><cites>FETCH-LOGICAL-c474t-bf1b3ba693a3c1e22fa8dcbdc6724c49aafd6a9d3ab53b7130ac64ea4cfbd7923</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1097276516307262$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27989441$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Papagiannakis, Alexandros</creatorcontrib><creatorcontrib>Niebel, Bastian</creatorcontrib><creatorcontrib>Wit, Ernst C.</creatorcontrib><creatorcontrib>Heinemann, Matthias</creatorcontrib><title>Autonomous Metabolic Oscillations Robustly Gate the Early and Late Cell Cycle</title><title>Molecular cell</title><addtitle>Mol Cell</addtitle><description>Eukaryotic cell division is known to be controlled by the cyclin/cyclin dependent kinase (CDK) machinery. However, eukaryotes have evolved prior to CDKs, and cells can divide in the absence of major cyclin/CDK components. We hypothesized that an autonomous metabolic oscillator provides dynamic triggers for cell-cycle initiation and progression. Using microfluidics, cell-cycle reporters, and single-cell metabolite measurements, we found that metabolism of budding yeast is a CDK-independent oscillator that oscillates across different growth conditions, both in synchrony with and also in the absence of the cell cycle. Using environmental perturbations and dynamic single-protein depletion experiments, we found that the metabolic oscillator and the cell cycle form a system of coupled oscillators, with the metabolic oscillator separately gating and maintaining synchrony with the early and late cell cycle. Establishing metabolism as a dynamic component within the cell-cycle network opens new avenues for cell-cycle research and therapeutic interventions for proliferative disorders. [Display omitted] •Metabolic cycles are an intrinsic, growth-condition-independent behavior of single cells•The metabolic oscillations are not the result of the cell cycle and thus are autonomous•The metabolic oscillator and the cyclin/CDK machinery form a system of coupled oscillators•Both the early and late cell cycle operate in coordination with the metabolic oscillator Papagiannakis et al. performed metabolite and cell-cycle measurements in single cells to show that the cell cycle is a higher-order function, which emerges from the collective synchrony between an autonomous metabolic oscillator, a biomass formation oscillator (early cell cycle), and a biomass segregation oscillator (late cell cycle).</description><subject>Adenosine Triphosphate - metabolism</subject><subject>Cell Cycle</subject><subject>coupled oscillators</subject><subject>Cyclin-Dependent Kinases - genetics</subject><subject>Cyclin-Dependent Kinases - metabolism</subject><subject>cyclin/CDK machinery</subject><subject>Energy Metabolism</subject><subject>FRET sensor</subject><subject>Genotype</subject><subject>metabolic oscillations</subject><subject>microfluidics</subject><subject>Microscopy, Fluorescence</subject><subject>Microscopy, Video</subject><subject>Models, Biological</subject><subject>Mutation</subject><subject>NAD(P)H</subject><subject>NADP - metabolism</subject><subject>Oscillometry</subject><subject>Periodicity</subject><subject>Phenotype</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - growth &amp; development</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>single cell</subject><subject>Time Factors</subject><subject>yeast metabolic cycle</subject><issn>1097-2765</issn><issn>1097-4164</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE-L2zAQxUVp2T_pfoNSfOwlrkdWZOtSCCGbLWRZWLZnMZLG1EG2tpZcyLdfhaR77GnmDe_NMD_GvkBVQgXy-6EcgrfkS55VCVBW0H5gN1CpZilAio-Xnjdydc1uYzxUFYhVq67YNW9Uq4SAG_a4nlMYwxDmWDxSQhN8b4unaHvvMfVhjMVzMHNM_ljsMFGRflOxxSlLHF2xP4025H2xOVpPn9mnDn2ku0tdsF_325fNw3L_tPu5We-XVjQiLU0HpjYoVY21BeK8w9ZZ46xsuLBCIXZOonI1mlVtGqgrtFIQCtsZ1yheL9i3897XKfyZKSY99DGz8DhS_kRDuwKueCtltoqz1U4hxok6_Tr1A05HDZU-gdQHfQapTyA1gM4gc-zr5cJsBnLvoX_ksuHH2UD5z789TTozo9GS6yeySbvQ___CG1nQhzg</recordid><startdate>20170119</startdate><enddate>20170119</enddate><creator>Papagiannakis, Alexandros</creator><creator>Niebel, Bastian</creator><creator>Wit, Ernst C.</creator><creator>Heinemann, Matthias</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20170119</creationdate><title>Autonomous Metabolic Oscillations Robustly Gate the Early and Late Cell Cycle</title><author>Papagiannakis, Alexandros ; Niebel, Bastian ; Wit, Ernst C. ; Heinemann, Matthias</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-bf1b3ba693a3c1e22fa8dcbdc6724c49aafd6a9d3ab53b7130ac64ea4cfbd7923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adenosine Triphosphate - metabolism</topic><topic>Cell Cycle</topic><topic>coupled oscillators</topic><topic>Cyclin-Dependent Kinases - genetics</topic><topic>Cyclin-Dependent Kinases - metabolism</topic><topic>cyclin/CDK machinery</topic><topic>Energy Metabolism</topic><topic>FRET sensor</topic><topic>Genotype</topic><topic>metabolic oscillations</topic><topic>microfluidics</topic><topic>Microscopy, Fluorescence</topic><topic>Microscopy, Video</topic><topic>Models, Biological</topic><topic>Mutation</topic><topic>NAD(P)H</topic><topic>NADP - metabolism</topic><topic>Oscillometry</topic><topic>Periodicity</topic><topic>Phenotype</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - growth &amp; development</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>single cell</topic><topic>Time Factors</topic><topic>yeast metabolic cycle</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Papagiannakis, Alexandros</creatorcontrib><creatorcontrib>Niebel, Bastian</creatorcontrib><creatorcontrib>Wit, Ernst C.</creatorcontrib><creatorcontrib>Heinemann, Matthias</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Papagiannakis, Alexandros</au><au>Niebel, Bastian</au><au>Wit, Ernst C.</au><au>Heinemann, Matthias</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Autonomous Metabolic Oscillations Robustly Gate the Early and Late Cell Cycle</atitle><jtitle>Molecular cell</jtitle><addtitle>Mol Cell</addtitle><date>2017-01-19</date><risdate>2017</risdate><volume>65</volume><issue>2</issue><spage>285</spage><epage>295</epage><pages>285-295</pages><issn>1097-2765</issn><eissn>1097-4164</eissn><abstract>Eukaryotic cell division is known to be controlled by the cyclin/cyclin dependent kinase (CDK) machinery. However, eukaryotes have evolved prior to CDKs, and cells can divide in the absence of major cyclin/CDK components. We hypothesized that an autonomous metabolic oscillator provides dynamic triggers for cell-cycle initiation and progression. Using microfluidics, cell-cycle reporters, and single-cell metabolite measurements, we found that metabolism of budding yeast is a CDK-independent oscillator that oscillates across different growth conditions, both in synchrony with and also in the absence of the cell cycle. Using environmental perturbations and dynamic single-protein depletion experiments, we found that the metabolic oscillator and the cell cycle form a system of coupled oscillators, with the metabolic oscillator separately gating and maintaining synchrony with the early and late cell cycle. Establishing metabolism as a dynamic component within the cell-cycle network opens new avenues for cell-cycle research and therapeutic interventions for proliferative disorders. [Display omitted] •Metabolic cycles are an intrinsic, growth-condition-independent behavior of single cells•The metabolic oscillations are not the result of the cell cycle and thus are autonomous•The metabolic oscillator and the cyclin/CDK machinery form a system of coupled oscillators•Both the early and late cell cycle operate in coordination with the metabolic oscillator Papagiannakis et al. performed metabolite and cell-cycle measurements in single cells to show that the cell cycle is a higher-order function, which emerges from the collective synchrony between an autonomous metabolic oscillator, a biomass formation oscillator (early cell cycle), and a biomass segregation oscillator (late cell cycle).</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>27989441</pmid><doi>10.1016/j.molcel.2016.11.018</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1097-2765
ispartof Molecular cell, 2017-01, Vol.65 (2), p.285-295
issn 1097-2765
1097-4164
language eng
recordid cdi_proquest_miscellaneous_1851292866
source ScienceDirect; MEDLINE; Full-Text Journals in Chemistry (Open access); EZB Free E-Journals; Cell Press Free Archives
subjects Adenosine Triphosphate - metabolism
Cell Cycle
coupled oscillators
Cyclin-Dependent Kinases - genetics
Cyclin-Dependent Kinases - metabolism
cyclin/CDK machinery
Energy Metabolism
FRET sensor
Genotype
metabolic oscillations
microfluidics
Microscopy, Fluorescence
Microscopy, Video
Models, Biological
Mutation
NAD(P)H
NADP - metabolism
Oscillometry
Periodicity
Phenotype
Saccharomyces cerevisiae
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - growth & development
Saccharomyces cerevisiae - metabolism
Saccharomyces cerevisiae Proteins - genetics
Saccharomyces cerevisiae Proteins - metabolism
single cell
Time Factors
yeast metabolic cycle
title Autonomous Metabolic Oscillations Robustly Gate the Early and Late Cell Cycle
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T16%3A39%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Autonomous%20Metabolic%20Oscillations%20Robustly%20Gate%20the%20Early%20and%20Late%20Cell%20Cycle&rft.jtitle=Molecular%20cell&rft.au=Papagiannakis,%20Alexandros&rft.date=2017-01-19&rft.volume=65&rft.issue=2&rft.spage=285&rft.epage=295&rft.pages=285-295&rft.issn=1097-2765&rft.eissn=1097-4164&rft_id=info:doi/10.1016/j.molcel.2016.11.018&rft_dat=%3Cproquest_cross%3E1851292866%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1851292866&rft_id=info:pmid/27989441&rft_els_id=S1097276516307262&rfr_iscdi=true