Analytic second derivatives from auxiliary density perturbation theory
The working equations for the calculation of analytic second energy derivatives in the framework of auxiliary density functional theory (ADFT) are presented. The needed perturbations are calculated with auxiliary density perturbation theory (ADPT) which is extended to perturbation dependent basis an...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2016-12, Vol.145 (22), p.224103-224103 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 224103 |
---|---|
container_issue | 22 |
container_start_page | 224103 |
container_title | The Journal of chemical physics |
container_volume | 145 |
creator | Delgado-Venegas, Rogelio Isaac Mejía-Rodríguez, Daniel Flores-Moreno, Roberto Calaminici, Patrizia Köster, Andreas M. |
description | The working equations for the calculation of analytic second energy derivatives in the framework of auxiliary density functional theory (ADFT) are presented. The needed perturbations are calculated with auxiliary density perturbation theory (ADPT) which is extended to perturbation dependent basis and auxiliary functions sets. The obtained ADPT equation systems are solved with the Eirola-Nevanlinna algorithm. The newly developed analytic second ADFT energy derivative approach was implemented in deMon2k and validated with respect to the corresponding finite difference approach by calculating the harmonic frequencies of small molecules. Good agreement between these two methodologies is found. To analyze the scaling of the new analytic second ADFT energy derivatives with respect to the number of processors in parallel runs, the harmonic frequencies of the carbon fullerene C240 are calculated with varying numbers of processors. Fair scaling up to 720 processors was found. As showcase applications, symmetry unrestricted optimization and frequency analyses of icosahedral carbon fullerenes with up to 960 atoms are presented. |
doi_str_mv | 10.1063/1.4971292 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1851285911</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1851285911</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-ad105d14bbf294f531940d6cc43c7e9143e3e0df625a06c68a31d66572af012b3</originalsourceid><addsrcrecordid>eNp90E1LxDAQBuAgiq4fB_-AFLyoUJ1J0rQ5LuIXCF70HNIkxUi3WZN2cf-91V0VFDzNYR7eYV5CDhHOEQS7wHMuS6SSbpAJQiXzUkjYJBMAirkUIHbIbkovAIAl5dtkh5ay4lXFJ-R62ul22XuTJWdCZzProl_o3i9cypoYZpke3nzrdVyOqy75fpnNXeyHWI8odFn_7EJc7pOtRrfJHaznHnm6vnq8vM3vH27uLqf3uWEV63NtEQqLvK4bKnlTMJQcrDCGM1M6iZw55sA2ghYahBGVZmiFKEqqG0Basz1yssqdx_A6uNSrmU_Gta3uXBiSwqpAWhUScaTHv-hLGOL4bVIUKRYUWMlHdbpSJoaUomvUPPrZ-K1CUB_lKlTrckd7tE4c6pmz3_KrzRGcrUAyvv-s59ssQvxJUnPb_If_nn4HbSePfw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2121520374</pqid></control><display><type>article</type><title>Analytic second derivatives from auxiliary density perturbation theory</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Delgado-Venegas, Rogelio Isaac ; Mejía-Rodríguez, Daniel ; Flores-Moreno, Roberto ; Calaminici, Patrizia ; Köster, Andreas M.</creator><creatorcontrib>Delgado-Venegas, Rogelio Isaac ; Mejía-Rodríguez, Daniel ; Flores-Moreno, Roberto ; Calaminici, Patrizia ; Köster, Andreas M.</creatorcontrib><description>The working equations for the calculation of analytic second energy derivatives in the framework of auxiliary density functional theory (ADFT) are presented. The needed perturbations are calculated with auxiliary density perturbation theory (ADPT) which is extended to perturbation dependent basis and auxiliary functions sets. The obtained ADPT equation systems are solved with the Eirola-Nevanlinna algorithm. The newly developed analytic second ADFT energy derivative approach was implemented in deMon2k and validated with respect to the corresponding finite difference approach by calculating the harmonic frequencies of small molecules. Good agreement between these two methodologies is found. To analyze the scaling of the new analytic second ADFT energy derivatives with respect to the number of processors in parallel runs, the harmonic frequencies of the carbon fullerene C240 are calculated with varying numbers of processors. Fair scaling up to 720 processors was found. As showcase applications, symmetry unrestricted optimization and frequency analyses of icosahedral carbon fullerenes with up to 960 atoms are presented.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.4971292</identifier><identifier>PMID: 27984884</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Carbon ; Density functional theory ; Derivatives ; Finite difference method ; Fullerenes ; Icosahedral phase ; Mathematical analysis ; Perturbation methods ; Perturbation theory ; Processors</subject><ispartof>The Journal of chemical physics, 2016-12, Vol.145 (22), p.224103-224103</ispartof><rights>Author(s)</rights><rights>2016 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-ad105d14bbf294f531940d6cc43c7e9143e3e0df625a06c68a31d66572af012b3</citedby><cites>FETCH-LOGICAL-c383t-ad105d14bbf294f531940d6cc43c7e9143e3e0df625a06c68a31d66572af012b3</cites><orcidid>0000-0002-0350-2941 ; 0000-0002-7821-6464</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/1.4971292$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4498,27901,27902,76126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27984884$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Delgado-Venegas, Rogelio Isaac</creatorcontrib><creatorcontrib>Mejía-Rodríguez, Daniel</creatorcontrib><creatorcontrib>Flores-Moreno, Roberto</creatorcontrib><creatorcontrib>Calaminici, Patrizia</creatorcontrib><creatorcontrib>Köster, Andreas M.</creatorcontrib><title>Analytic second derivatives from auxiliary density perturbation theory</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>The working equations for the calculation of analytic second energy derivatives in the framework of auxiliary density functional theory (ADFT) are presented. The needed perturbations are calculated with auxiliary density perturbation theory (ADPT) which is extended to perturbation dependent basis and auxiliary functions sets. The obtained ADPT equation systems are solved with the Eirola-Nevanlinna algorithm. The newly developed analytic second ADFT energy derivative approach was implemented in deMon2k and validated with respect to the corresponding finite difference approach by calculating the harmonic frequencies of small molecules. Good agreement between these two methodologies is found. To analyze the scaling of the new analytic second ADFT energy derivatives with respect to the number of processors in parallel runs, the harmonic frequencies of the carbon fullerene C240 are calculated with varying numbers of processors. Fair scaling up to 720 processors was found. As showcase applications, symmetry unrestricted optimization and frequency analyses of icosahedral carbon fullerenes with up to 960 atoms are presented.</description><subject>Carbon</subject><subject>Density functional theory</subject><subject>Derivatives</subject><subject>Finite difference method</subject><subject>Fullerenes</subject><subject>Icosahedral phase</subject><subject>Mathematical analysis</subject><subject>Perturbation methods</subject><subject>Perturbation theory</subject><subject>Processors</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp90E1LxDAQBuAgiq4fB_-AFLyoUJ1J0rQ5LuIXCF70HNIkxUi3WZN2cf-91V0VFDzNYR7eYV5CDhHOEQS7wHMuS6SSbpAJQiXzUkjYJBMAirkUIHbIbkovAIAl5dtkh5ay4lXFJ-R62ul22XuTJWdCZzProl_o3i9cypoYZpke3nzrdVyOqy75fpnNXeyHWI8odFn_7EJc7pOtRrfJHaznHnm6vnq8vM3vH27uLqf3uWEV63NtEQqLvK4bKnlTMJQcrDCGM1M6iZw55sA2ghYahBGVZmiFKEqqG0Basz1yssqdx_A6uNSrmU_Gta3uXBiSwqpAWhUScaTHv-hLGOL4bVIUKRYUWMlHdbpSJoaUomvUPPrZ-K1CUB_lKlTrckd7tE4c6pmz3_KrzRGcrUAyvv-s59ssQvxJUnPb_If_nn4HbSePfw</recordid><startdate>20161214</startdate><enddate>20161214</enddate><creator>Delgado-Venegas, Rogelio Isaac</creator><creator>Mejía-Rodríguez, Daniel</creator><creator>Flores-Moreno, Roberto</creator><creator>Calaminici, Patrizia</creator><creator>Köster, Andreas M.</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0350-2941</orcidid><orcidid>https://orcid.org/0000-0002-7821-6464</orcidid></search><sort><creationdate>20161214</creationdate><title>Analytic second derivatives from auxiliary density perturbation theory</title><author>Delgado-Venegas, Rogelio Isaac ; Mejía-Rodríguez, Daniel ; Flores-Moreno, Roberto ; Calaminici, Patrizia ; Köster, Andreas M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-ad105d14bbf294f531940d6cc43c7e9143e3e0df625a06c68a31d66572af012b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Carbon</topic><topic>Density functional theory</topic><topic>Derivatives</topic><topic>Finite difference method</topic><topic>Fullerenes</topic><topic>Icosahedral phase</topic><topic>Mathematical analysis</topic><topic>Perturbation methods</topic><topic>Perturbation theory</topic><topic>Processors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Delgado-Venegas, Rogelio Isaac</creatorcontrib><creatorcontrib>Mejía-Rodríguez, Daniel</creatorcontrib><creatorcontrib>Flores-Moreno, Roberto</creatorcontrib><creatorcontrib>Calaminici, Patrizia</creatorcontrib><creatorcontrib>Köster, Andreas M.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Delgado-Venegas, Rogelio Isaac</au><au>Mejía-Rodríguez, Daniel</au><au>Flores-Moreno, Roberto</au><au>Calaminici, Patrizia</au><au>Köster, Andreas M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analytic second derivatives from auxiliary density perturbation theory</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2016-12-14</date><risdate>2016</risdate><volume>145</volume><issue>22</issue><spage>224103</spage><epage>224103</epage><pages>224103-224103</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>The working equations for the calculation of analytic second energy derivatives in the framework of auxiliary density functional theory (ADFT) are presented. The needed perturbations are calculated with auxiliary density perturbation theory (ADPT) which is extended to perturbation dependent basis and auxiliary functions sets. The obtained ADPT equation systems are solved with the Eirola-Nevanlinna algorithm. The newly developed analytic second ADFT energy derivative approach was implemented in deMon2k and validated with respect to the corresponding finite difference approach by calculating the harmonic frequencies of small molecules. Good agreement between these two methodologies is found. To analyze the scaling of the new analytic second ADFT energy derivatives with respect to the number of processors in parallel runs, the harmonic frequencies of the carbon fullerene C240 are calculated with varying numbers of processors. Fair scaling up to 720 processors was found. As showcase applications, symmetry unrestricted optimization and frequency analyses of icosahedral carbon fullerenes with up to 960 atoms are presented.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>27984884</pmid><doi>10.1063/1.4971292</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-0350-2941</orcidid><orcidid>https://orcid.org/0000-0002-7821-6464</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9606 |
ispartof | The Journal of chemical physics, 2016-12, Vol.145 (22), p.224103-224103 |
issn | 0021-9606 1089-7690 |
language | eng |
recordid | cdi_proquest_miscellaneous_1851285911 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Carbon Density functional theory Derivatives Finite difference method Fullerenes Icosahedral phase Mathematical analysis Perturbation methods Perturbation theory Processors |
title | Analytic second derivatives from auxiliary density perturbation theory |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T05%3A02%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analytic%20second%20derivatives%20from%20auxiliary%20density%20perturbation%20theory&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Delgado-Venegas,%20Rogelio%20Isaac&rft.date=2016-12-14&rft.volume=145&rft.issue=22&rft.spage=224103&rft.epage=224103&rft.pages=224103-224103&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/1.4971292&rft_dat=%3Cproquest_pubme%3E1851285911%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2121520374&rft_id=info:pmid/27984884&rfr_iscdi=true |