Analytic second derivatives from auxiliary density perturbation theory

The working equations for the calculation of analytic second energy derivatives in the framework of auxiliary density functional theory (ADFT) are presented. The needed perturbations are calculated with auxiliary density perturbation theory (ADPT) which is extended to perturbation dependent basis an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2016-12, Vol.145 (22), p.224103-224103
Hauptverfasser: Delgado-Venegas, Rogelio Isaac, Mejía-Rodríguez, Daniel, Flores-Moreno, Roberto, Calaminici, Patrizia, Köster, Andreas M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 224103
container_issue 22
container_start_page 224103
container_title The Journal of chemical physics
container_volume 145
creator Delgado-Venegas, Rogelio Isaac
Mejía-Rodríguez, Daniel
Flores-Moreno, Roberto
Calaminici, Patrizia
Köster, Andreas M.
description The working equations for the calculation of analytic second energy derivatives in the framework of auxiliary density functional theory (ADFT) are presented. The needed perturbations are calculated with auxiliary density perturbation theory (ADPT) which is extended to perturbation dependent basis and auxiliary functions sets. The obtained ADPT equation systems are solved with the Eirola-Nevanlinna algorithm. The newly developed analytic second ADFT energy derivative approach was implemented in deMon2k and validated with respect to the corresponding finite difference approach by calculating the harmonic frequencies of small molecules. Good agreement between these two methodologies is found. To analyze the scaling of the new analytic second ADFT energy derivatives with respect to the number of processors in parallel runs, the harmonic frequencies of the carbon fullerene C240 are calculated with varying numbers of processors. Fair scaling up to 720 processors was found. As showcase applications, symmetry unrestricted optimization and frequency analyses of icosahedral carbon fullerenes with up to 960 atoms are presented.
doi_str_mv 10.1063/1.4971292
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1851285911</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1851285911</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-ad105d14bbf294f531940d6cc43c7e9143e3e0df625a06c68a31d66572af012b3</originalsourceid><addsrcrecordid>eNp90E1LxDAQBuAgiq4fB_-AFLyoUJ1J0rQ5LuIXCF70HNIkxUi3WZN2cf-91V0VFDzNYR7eYV5CDhHOEQS7wHMuS6SSbpAJQiXzUkjYJBMAirkUIHbIbkovAIAl5dtkh5ay4lXFJ-R62ul22XuTJWdCZzProl_o3i9cypoYZpke3nzrdVyOqy75fpnNXeyHWI8odFn_7EJc7pOtRrfJHaznHnm6vnq8vM3vH27uLqf3uWEV63NtEQqLvK4bKnlTMJQcrDCGM1M6iZw55sA2ghYahBGVZmiFKEqqG0Basz1yssqdx_A6uNSrmU_Gta3uXBiSwqpAWhUScaTHv-hLGOL4bVIUKRYUWMlHdbpSJoaUomvUPPrZ-K1CUB_lKlTrckd7tE4c6pmz3_KrzRGcrUAyvv-s59ssQvxJUnPb_If_nn4HbSePfw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2121520374</pqid></control><display><type>article</type><title>Analytic second derivatives from auxiliary density perturbation theory</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Delgado-Venegas, Rogelio Isaac ; Mejía-Rodríguez, Daniel ; Flores-Moreno, Roberto ; Calaminici, Patrizia ; Köster, Andreas M.</creator><creatorcontrib>Delgado-Venegas, Rogelio Isaac ; Mejía-Rodríguez, Daniel ; Flores-Moreno, Roberto ; Calaminici, Patrizia ; Köster, Andreas M.</creatorcontrib><description>The working equations for the calculation of analytic second energy derivatives in the framework of auxiliary density functional theory (ADFT) are presented. The needed perturbations are calculated with auxiliary density perturbation theory (ADPT) which is extended to perturbation dependent basis and auxiliary functions sets. The obtained ADPT equation systems are solved with the Eirola-Nevanlinna algorithm. The newly developed analytic second ADFT energy derivative approach was implemented in deMon2k and validated with respect to the corresponding finite difference approach by calculating the harmonic frequencies of small molecules. Good agreement between these two methodologies is found. To analyze the scaling of the new analytic second ADFT energy derivatives with respect to the number of processors in parallel runs, the harmonic frequencies of the carbon fullerene C240 are calculated with varying numbers of processors. Fair scaling up to 720 processors was found. As showcase applications, symmetry unrestricted optimization and frequency analyses of icosahedral carbon fullerenes with up to 960 atoms are presented.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.4971292</identifier><identifier>PMID: 27984884</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Carbon ; Density functional theory ; Derivatives ; Finite difference method ; Fullerenes ; Icosahedral phase ; Mathematical analysis ; Perturbation methods ; Perturbation theory ; Processors</subject><ispartof>The Journal of chemical physics, 2016-12, Vol.145 (22), p.224103-224103</ispartof><rights>Author(s)</rights><rights>2016 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-ad105d14bbf294f531940d6cc43c7e9143e3e0df625a06c68a31d66572af012b3</citedby><cites>FETCH-LOGICAL-c383t-ad105d14bbf294f531940d6cc43c7e9143e3e0df625a06c68a31d66572af012b3</cites><orcidid>0000-0002-0350-2941 ; 0000-0002-7821-6464</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/1.4971292$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4498,27901,27902,76126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27984884$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Delgado-Venegas, Rogelio Isaac</creatorcontrib><creatorcontrib>Mejía-Rodríguez, Daniel</creatorcontrib><creatorcontrib>Flores-Moreno, Roberto</creatorcontrib><creatorcontrib>Calaminici, Patrizia</creatorcontrib><creatorcontrib>Köster, Andreas M.</creatorcontrib><title>Analytic second derivatives from auxiliary density perturbation theory</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>The working equations for the calculation of analytic second energy derivatives in the framework of auxiliary density functional theory (ADFT) are presented. The needed perturbations are calculated with auxiliary density perturbation theory (ADPT) which is extended to perturbation dependent basis and auxiliary functions sets. The obtained ADPT equation systems are solved with the Eirola-Nevanlinna algorithm. The newly developed analytic second ADFT energy derivative approach was implemented in deMon2k and validated with respect to the corresponding finite difference approach by calculating the harmonic frequencies of small molecules. Good agreement between these two methodologies is found. To analyze the scaling of the new analytic second ADFT energy derivatives with respect to the number of processors in parallel runs, the harmonic frequencies of the carbon fullerene C240 are calculated with varying numbers of processors. Fair scaling up to 720 processors was found. As showcase applications, symmetry unrestricted optimization and frequency analyses of icosahedral carbon fullerenes with up to 960 atoms are presented.</description><subject>Carbon</subject><subject>Density functional theory</subject><subject>Derivatives</subject><subject>Finite difference method</subject><subject>Fullerenes</subject><subject>Icosahedral phase</subject><subject>Mathematical analysis</subject><subject>Perturbation methods</subject><subject>Perturbation theory</subject><subject>Processors</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp90E1LxDAQBuAgiq4fB_-AFLyoUJ1J0rQ5LuIXCF70HNIkxUi3WZN2cf-91V0VFDzNYR7eYV5CDhHOEQS7wHMuS6SSbpAJQiXzUkjYJBMAirkUIHbIbkovAIAl5dtkh5ay4lXFJ-R62ul22XuTJWdCZzProl_o3i9cypoYZpke3nzrdVyOqy75fpnNXeyHWI8odFn_7EJc7pOtRrfJHaznHnm6vnq8vM3vH27uLqf3uWEV63NtEQqLvK4bKnlTMJQcrDCGM1M6iZw55sA2ghYahBGVZmiFKEqqG0Basz1yssqdx_A6uNSrmU_Gta3uXBiSwqpAWhUScaTHv-hLGOL4bVIUKRYUWMlHdbpSJoaUomvUPPrZ-K1CUB_lKlTrckd7tE4c6pmz3_KrzRGcrUAyvv-s59ssQvxJUnPb_If_nn4HbSePfw</recordid><startdate>20161214</startdate><enddate>20161214</enddate><creator>Delgado-Venegas, Rogelio Isaac</creator><creator>Mejía-Rodríguez, Daniel</creator><creator>Flores-Moreno, Roberto</creator><creator>Calaminici, Patrizia</creator><creator>Köster, Andreas M.</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0350-2941</orcidid><orcidid>https://orcid.org/0000-0002-7821-6464</orcidid></search><sort><creationdate>20161214</creationdate><title>Analytic second derivatives from auxiliary density perturbation theory</title><author>Delgado-Venegas, Rogelio Isaac ; Mejía-Rodríguez, Daniel ; Flores-Moreno, Roberto ; Calaminici, Patrizia ; Köster, Andreas M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-ad105d14bbf294f531940d6cc43c7e9143e3e0df625a06c68a31d66572af012b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Carbon</topic><topic>Density functional theory</topic><topic>Derivatives</topic><topic>Finite difference method</topic><topic>Fullerenes</topic><topic>Icosahedral phase</topic><topic>Mathematical analysis</topic><topic>Perturbation methods</topic><topic>Perturbation theory</topic><topic>Processors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Delgado-Venegas, Rogelio Isaac</creatorcontrib><creatorcontrib>Mejía-Rodríguez, Daniel</creatorcontrib><creatorcontrib>Flores-Moreno, Roberto</creatorcontrib><creatorcontrib>Calaminici, Patrizia</creatorcontrib><creatorcontrib>Köster, Andreas M.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Delgado-Venegas, Rogelio Isaac</au><au>Mejía-Rodríguez, Daniel</au><au>Flores-Moreno, Roberto</au><au>Calaminici, Patrizia</au><au>Köster, Andreas M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analytic second derivatives from auxiliary density perturbation theory</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2016-12-14</date><risdate>2016</risdate><volume>145</volume><issue>22</issue><spage>224103</spage><epage>224103</epage><pages>224103-224103</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>The working equations for the calculation of analytic second energy derivatives in the framework of auxiliary density functional theory (ADFT) are presented. The needed perturbations are calculated with auxiliary density perturbation theory (ADPT) which is extended to perturbation dependent basis and auxiliary functions sets. The obtained ADPT equation systems are solved with the Eirola-Nevanlinna algorithm. The newly developed analytic second ADFT energy derivative approach was implemented in deMon2k and validated with respect to the corresponding finite difference approach by calculating the harmonic frequencies of small molecules. Good agreement between these two methodologies is found. To analyze the scaling of the new analytic second ADFT energy derivatives with respect to the number of processors in parallel runs, the harmonic frequencies of the carbon fullerene C240 are calculated with varying numbers of processors. Fair scaling up to 720 processors was found. As showcase applications, symmetry unrestricted optimization and frequency analyses of icosahedral carbon fullerenes with up to 960 atoms are presented.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>27984884</pmid><doi>10.1063/1.4971292</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-0350-2941</orcidid><orcidid>https://orcid.org/0000-0002-7821-6464</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2016-12, Vol.145 (22), p.224103-224103
issn 0021-9606
1089-7690
language eng
recordid cdi_proquest_miscellaneous_1851285911
source AIP Journals Complete; Alma/SFX Local Collection
subjects Carbon
Density functional theory
Derivatives
Finite difference method
Fullerenes
Icosahedral phase
Mathematical analysis
Perturbation methods
Perturbation theory
Processors
title Analytic second derivatives from auxiliary density perturbation theory
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T05%3A02%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analytic%20second%20derivatives%20from%20auxiliary%20density%20perturbation%20theory&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Delgado-Venegas,%20Rogelio%20Isaac&rft.date=2016-12-14&rft.volume=145&rft.issue=22&rft.spage=224103&rft.epage=224103&rft.pages=224103-224103&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/1.4971292&rft_dat=%3Cproquest_pubme%3E1851285911%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2121520374&rft_id=info:pmid/27984884&rfr_iscdi=true