Anatomical evidence for functional diversity in the mesencephalic locomotor region of primates

The mesencephalic locomotor region (MLR) is a highly preserved brainstem structure in vertebrates. The MLR performs a crucial role in locomotion but also controls various other functions such as sleep, attention, and even emotion. The MLR comprises the pedunculopontine (PPN) and cuneiform nuclei (Cu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NeuroImage (Orlando, Fla.) Fla.), 2017-02, Vol.147, p.66-78
Hauptverfasser: Sébille, Sophie B., Belaid, Hayat, Philippe, Anne-Charlotte, André, Arthur, Lau, Brian, François, Chantal, Karachi, Carine, Bardinet, Eric
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 78
container_issue
container_start_page 66
container_title NeuroImage (Orlando, Fla.)
container_volume 147
creator Sébille, Sophie B.
Belaid, Hayat
Philippe, Anne-Charlotte
André, Arthur
Lau, Brian
François, Chantal
Karachi, Carine
Bardinet, Eric
description The mesencephalic locomotor region (MLR) is a highly preserved brainstem structure in vertebrates. The MLR performs a crucial role in locomotion but also controls various other functions such as sleep, attention, and even emotion. The MLR comprises the pedunculopontine (PPN) and cuneiform nuclei (CuN) but their specific roles are still unknown in primates. Here, we sought to characterise the inputs and outputs of the PPN and CuN to and from the basal ganglia, thalamus, amygdala and cortex, with a specific interest in identifying functional anatomical territories. For this purpose, we used tract-tracing techniques in monkeys and diffusion weighted imaging-based tractography in humans to understand structural connectivity. We found that MLR connections are broadly similar between monkeys and humans. The PPN projects to the sensorimotor, associative and limbic territories of the basal ganglia nuclei, the centre median-parafascicular thalamic nuclei and the central nucleus of the amygdala. The PPN receives motor cortical inputs and less abundant connections from the associative and limbic cortices. In monkeys, we found a stronger connection between the anterior PPN and motor cortex suggesting a topographical organisation of this specific projection. The CuN projected to similar cerebral structures to the PPN in both species. However, these projections were much stronger towards the limbic territories of the basal ganglia and thalamus, to the basal forebrain (extended amygdala) and the central nucleus of the amygdala, suggesting that the CuN is not primarily a motor structure. Our findings highlight the fact that the PPN integrates sensorimotor, cognitive and emotional information whereas the CuN participates in a more restricted network integrating predominantly emotional information. •Investigating MLR functional connectivity in primates.•Tract tracing experiments in monkeys.•Diffusion-weighted imaging based tractography in humans.•The PPN integrates sensorimotor, cognitive and emotional information.•The CuN integrates predominantly emotional information.
doi_str_mv 10.1016/j.neuroimage.2016.12.011
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1851283911</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1053811916307194</els_id><sourcerecordid>1851283911</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-7c0b1c4de133677929370c39492ae008e6cd9121405cd61505b7c98331fbcbfc3</originalsourceid><addsrcrecordid>eNqFkUtv1TAQhS0Eoi_-ArLEhk3CjJ2HvSwVUKRK3ZRtrcSZtL5K4ovtXKn_Hqe3gMSGla3Rd3w85zDGEUoEbD7tyoXW4N3cPVAp8qREUQLiK3aKoOtC1614vd1rWShEfcLOYtwBgMZKvWUnotV1I0CdsvvLpUt-drabOB3cQIslPvrAx3Wxyfklzwd3oBBdeuJu4emR-Exx4_aP3eQsn7z1s09ZE-ghK7gf-T7kvyWKF-zN2E2R3r2c5-zH1y93V9fFze2371eXN4WtQKSitdCjrQZCKZu21ULLFqzUlRYdAShq7KBRYAW1HRqsoe5bq5WUOPa2H608Zx-P7-6D_7lSTGZ20dI0dQv5NRpUNQolNWJGP_yD7vwa8p4bpRVC1UrIlDpSNvgYA43meaXwZBDM1oHZmb8dmK0Dg8LAs8H7F4O1n2n4I_wdegY-HwHKiRwcBROt2wIdXCCbzODd_11-AZzfnWU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1898104730</pqid></control><display><type>article</type><title>Anatomical evidence for functional diversity in the mesencephalic locomotor region of primates</title><source>ScienceDirect Journals (5 years ago - present)</source><source>ProQuest Central UK/Ireland</source><creator>Sébille, Sophie B. ; Belaid, Hayat ; Philippe, Anne-Charlotte ; André, Arthur ; Lau, Brian ; François, Chantal ; Karachi, Carine ; Bardinet, Eric</creator><creatorcontrib>Sébille, Sophie B. ; Belaid, Hayat ; Philippe, Anne-Charlotte ; André, Arthur ; Lau, Brian ; François, Chantal ; Karachi, Carine ; Bardinet, Eric</creatorcontrib><description>The mesencephalic locomotor region (MLR) is a highly preserved brainstem structure in vertebrates. The MLR performs a crucial role in locomotion but also controls various other functions such as sleep, attention, and even emotion. The MLR comprises the pedunculopontine (PPN) and cuneiform nuclei (CuN) but their specific roles are still unknown in primates. Here, we sought to characterise the inputs and outputs of the PPN and CuN to and from the basal ganglia, thalamus, amygdala and cortex, with a specific interest in identifying functional anatomical territories. For this purpose, we used tract-tracing techniques in monkeys and diffusion weighted imaging-based tractography in humans to understand structural connectivity. We found that MLR connections are broadly similar between monkeys and humans. The PPN projects to the sensorimotor, associative and limbic territories of the basal ganglia nuclei, the centre median-parafascicular thalamic nuclei and the central nucleus of the amygdala. The PPN receives motor cortical inputs and less abundant connections from the associative and limbic cortices. In monkeys, we found a stronger connection between the anterior PPN and motor cortex suggesting a topographical organisation of this specific projection. The CuN projected to similar cerebral structures to the PPN in both species. However, these projections were much stronger towards the limbic territories of the basal ganglia and thalamus, to the basal forebrain (extended amygdala) and the central nucleus of the amygdala, suggesting that the CuN is not primarily a motor structure. Our findings highlight the fact that the PPN integrates sensorimotor, cognitive and emotional information whereas the CuN participates in a more restricted network integrating predominantly emotional information. •Investigating MLR functional connectivity in primates.•Tract tracing experiments in monkeys.•Diffusion-weighted imaging based tractography in humans.•The PPN integrates sensorimotor, cognitive and emotional information.•The CuN integrates predominantly emotional information.</description><identifier>ISSN: 1053-8119</identifier><identifier>EISSN: 1095-9572</identifier><identifier>DOI: 10.1016/j.neuroimage.2016.12.011</identifier><identifier>PMID: 27956208</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Amygdala ; Animal cognition ; Basal forebrain ; Basal ganglia ; Brain stem ; Cognitive ability ; Cortex (motor) ; Cuneiform nucleus ; Emotions ; Experiments ; Forebrain ; Human ; Laboratory animals ; Locomotion ; Monkey ; Monkeys ; Motor task performance ; Neuroimaging ; Neurosciences ; Parafascicular nucleus ; Pedunculopontine nucleus ; Primates ; Sensorimotor system ; Sleep ; Thalamic nuclei ; Thalamus ; Tract tracing ; Tractography ; Vertebrates</subject><ispartof>NeuroImage (Orlando, Fla.), 2017-02, Vol.147, p.66-78</ispartof><rights>2016 Elsevier Inc.</rights><rights>Copyright © 2016 Elsevier Inc. All rights reserved.</rights><rights>Copyright Elsevier Limited Feb 15, 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-7c0b1c4de133677929370c39492ae008e6cd9121405cd61505b7c98331fbcbfc3</citedby><cites>FETCH-LOGICAL-c402t-7c0b1c4de133677929370c39492ae008e6cd9121405cd61505b7c98331fbcbfc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1898104730?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,3541,27915,27916,45986,64374,64376,64378,72230</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27956208$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sébille, Sophie B.</creatorcontrib><creatorcontrib>Belaid, Hayat</creatorcontrib><creatorcontrib>Philippe, Anne-Charlotte</creatorcontrib><creatorcontrib>André, Arthur</creatorcontrib><creatorcontrib>Lau, Brian</creatorcontrib><creatorcontrib>François, Chantal</creatorcontrib><creatorcontrib>Karachi, Carine</creatorcontrib><creatorcontrib>Bardinet, Eric</creatorcontrib><title>Anatomical evidence for functional diversity in the mesencephalic locomotor region of primates</title><title>NeuroImage (Orlando, Fla.)</title><addtitle>Neuroimage</addtitle><description>The mesencephalic locomotor region (MLR) is a highly preserved brainstem structure in vertebrates. The MLR performs a crucial role in locomotion but also controls various other functions such as sleep, attention, and even emotion. The MLR comprises the pedunculopontine (PPN) and cuneiform nuclei (CuN) but their specific roles are still unknown in primates. Here, we sought to characterise the inputs and outputs of the PPN and CuN to and from the basal ganglia, thalamus, amygdala and cortex, with a specific interest in identifying functional anatomical territories. For this purpose, we used tract-tracing techniques in monkeys and diffusion weighted imaging-based tractography in humans to understand structural connectivity. We found that MLR connections are broadly similar between monkeys and humans. The PPN projects to the sensorimotor, associative and limbic territories of the basal ganglia nuclei, the centre median-parafascicular thalamic nuclei and the central nucleus of the amygdala. The PPN receives motor cortical inputs and less abundant connections from the associative and limbic cortices. In monkeys, we found a stronger connection between the anterior PPN and motor cortex suggesting a topographical organisation of this specific projection. The CuN projected to similar cerebral structures to the PPN in both species. However, these projections were much stronger towards the limbic territories of the basal ganglia and thalamus, to the basal forebrain (extended amygdala) and the central nucleus of the amygdala, suggesting that the CuN is not primarily a motor structure. Our findings highlight the fact that the PPN integrates sensorimotor, cognitive and emotional information whereas the CuN participates in a more restricted network integrating predominantly emotional information. •Investigating MLR functional connectivity in primates.•Tract tracing experiments in monkeys.•Diffusion-weighted imaging based tractography in humans.•The PPN integrates sensorimotor, cognitive and emotional information.•The CuN integrates predominantly emotional information.</description><subject>Amygdala</subject><subject>Animal cognition</subject><subject>Basal forebrain</subject><subject>Basal ganglia</subject><subject>Brain stem</subject><subject>Cognitive ability</subject><subject>Cortex (motor)</subject><subject>Cuneiform nucleus</subject><subject>Emotions</subject><subject>Experiments</subject><subject>Forebrain</subject><subject>Human</subject><subject>Laboratory animals</subject><subject>Locomotion</subject><subject>Monkey</subject><subject>Monkeys</subject><subject>Motor task performance</subject><subject>Neuroimaging</subject><subject>Neurosciences</subject><subject>Parafascicular nucleus</subject><subject>Pedunculopontine nucleus</subject><subject>Primates</subject><subject>Sensorimotor system</subject><subject>Sleep</subject><subject>Thalamic nuclei</subject><subject>Thalamus</subject><subject>Tract tracing</subject><subject>Tractography</subject><subject>Vertebrates</subject><issn>1053-8119</issn><issn>1095-9572</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkUtv1TAQhS0Eoi_-ArLEhk3CjJ2HvSwVUKRK3ZRtrcSZtL5K4ovtXKn_Hqe3gMSGla3Rd3w85zDGEUoEbD7tyoXW4N3cPVAp8qREUQLiK3aKoOtC1614vd1rWShEfcLOYtwBgMZKvWUnotV1I0CdsvvLpUt-drabOB3cQIslPvrAx3Wxyfklzwd3oBBdeuJu4emR-Exx4_aP3eQsn7z1s09ZE-ghK7gf-T7kvyWKF-zN2E2R3r2c5-zH1y93V9fFze2371eXN4WtQKSitdCjrQZCKZu21ULLFqzUlRYdAShq7KBRYAW1HRqsoe5bq5WUOPa2H608Zx-P7-6D_7lSTGZ20dI0dQv5NRpUNQolNWJGP_yD7vwa8p4bpRVC1UrIlDpSNvgYA43meaXwZBDM1oHZmb8dmK0Dg8LAs8H7F4O1n2n4I_wdegY-HwHKiRwcBROt2wIdXCCbzODd_11-AZzfnWU</recordid><startdate>20170215</startdate><enddate>20170215</enddate><creator>Sébille, Sophie B.</creator><creator>Belaid, Hayat</creator><creator>Philippe, Anne-Charlotte</creator><creator>André, Arthur</creator><creator>Lau, Brian</creator><creator>François, Chantal</creator><creator>Karachi, Carine</creator><creator>Bardinet, Eric</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20170215</creationdate><title>Anatomical evidence for functional diversity in the mesencephalic locomotor region of primates</title><author>Sébille, Sophie B. ; Belaid, Hayat ; Philippe, Anne-Charlotte ; André, Arthur ; Lau, Brian ; François, Chantal ; Karachi, Carine ; Bardinet, Eric</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-7c0b1c4de133677929370c39492ae008e6cd9121405cd61505b7c98331fbcbfc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Amygdala</topic><topic>Animal cognition</topic><topic>Basal forebrain</topic><topic>Basal ganglia</topic><topic>Brain stem</topic><topic>Cognitive ability</topic><topic>Cortex (motor)</topic><topic>Cuneiform nucleus</topic><topic>Emotions</topic><topic>Experiments</topic><topic>Forebrain</topic><topic>Human</topic><topic>Laboratory animals</topic><topic>Locomotion</topic><topic>Monkey</topic><topic>Monkeys</topic><topic>Motor task performance</topic><topic>Neuroimaging</topic><topic>Neurosciences</topic><topic>Parafascicular nucleus</topic><topic>Pedunculopontine nucleus</topic><topic>Primates</topic><topic>Sensorimotor system</topic><topic>Sleep</topic><topic>Thalamic nuclei</topic><topic>Thalamus</topic><topic>Tract tracing</topic><topic>Tractography</topic><topic>Vertebrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sébille, Sophie B.</creatorcontrib><creatorcontrib>Belaid, Hayat</creatorcontrib><creatorcontrib>Philippe, Anne-Charlotte</creatorcontrib><creatorcontrib>André, Arthur</creatorcontrib><creatorcontrib>Lau, Brian</creatorcontrib><creatorcontrib>François, Chantal</creatorcontrib><creatorcontrib>Karachi, Carine</creatorcontrib><creatorcontrib>Bardinet, Eric</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>NeuroImage (Orlando, Fla.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sébille, Sophie B.</au><au>Belaid, Hayat</au><au>Philippe, Anne-Charlotte</au><au>André, Arthur</au><au>Lau, Brian</au><au>François, Chantal</au><au>Karachi, Carine</au><au>Bardinet, Eric</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anatomical evidence for functional diversity in the mesencephalic locomotor region of primates</atitle><jtitle>NeuroImage (Orlando, Fla.)</jtitle><addtitle>Neuroimage</addtitle><date>2017-02-15</date><risdate>2017</risdate><volume>147</volume><spage>66</spage><epage>78</epage><pages>66-78</pages><issn>1053-8119</issn><eissn>1095-9572</eissn><abstract>The mesencephalic locomotor region (MLR) is a highly preserved brainstem structure in vertebrates. The MLR performs a crucial role in locomotion but also controls various other functions such as sleep, attention, and even emotion. The MLR comprises the pedunculopontine (PPN) and cuneiform nuclei (CuN) but their specific roles are still unknown in primates. Here, we sought to characterise the inputs and outputs of the PPN and CuN to and from the basal ganglia, thalamus, amygdala and cortex, with a specific interest in identifying functional anatomical territories. For this purpose, we used tract-tracing techniques in monkeys and diffusion weighted imaging-based tractography in humans to understand structural connectivity. We found that MLR connections are broadly similar between monkeys and humans. The PPN projects to the sensorimotor, associative and limbic territories of the basal ganglia nuclei, the centre median-parafascicular thalamic nuclei and the central nucleus of the amygdala. The PPN receives motor cortical inputs and less abundant connections from the associative and limbic cortices. In monkeys, we found a stronger connection between the anterior PPN and motor cortex suggesting a topographical organisation of this specific projection. The CuN projected to similar cerebral structures to the PPN in both species. However, these projections were much stronger towards the limbic territories of the basal ganglia and thalamus, to the basal forebrain (extended amygdala) and the central nucleus of the amygdala, suggesting that the CuN is not primarily a motor structure. Our findings highlight the fact that the PPN integrates sensorimotor, cognitive and emotional information whereas the CuN participates in a more restricted network integrating predominantly emotional information. •Investigating MLR functional connectivity in primates.•Tract tracing experiments in monkeys.•Diffusion-weighted imaging based tractography in humans.•The PPN integrates sensorimotor, cognitive and emotional information.•The CuN integrates predominantly emotional information.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>27956208</pmid><doi>10.1016/j.neuroimage.2016.12.011</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1053-8119
ispartof NeuroImage (Orlando, Fla.), 2017-02, Vol.147, p.66-78
issn 1053-8119
1095-9572
language eng
recordid cdi_proquest_miscellaneous_1851283911
source ScienceDirect Journals (5 years ago - present); ProQuest Central UK/Ireland
subjects Amygdala
Animal cognition
Basal forebrain
Basal ganglia
Brain stem
Cognitive ability
Cortex (motor)
Cuneiform nucleus
Emotions
Experiments
Forebrain
Human
Laboratory animals
Locomotion
Monkey
Monkeys
Motor task performance
Neuroimaging
Neurosciences
Parafascicular nucleus
Pedunculopontine nucleus
Primates
Sensorimotor system
Sleep
Thalamic nuclei
Thalamus
Tract tracing
Tractography
Vertebrates
title Anatomical evidence for functional diversity in the mesencephalic locomotor region of primates
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T04%3A46%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anatomical%20evidence%20for%20functional%20diversity%20in%20the%20mesencephalic%20locomotor%20region%20of%20primates&rft.jtitle=NeuroImage%20(Orlando,%20Fla.)&rft.au=S%C3%A9bille,%20Sophie%20B.&rft.date=2017-02-15&rft.volume=147&rft.spage=66&rft.epage=78&rft.pages=66-78&rft.issn=1053-8119&rft.eissn=1095-9572&rft_id=info:doi/10.1016/j.neuroimage.2016.12.011&rft_dat=%3Cproquest_cross%3E1851283911%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1898104730&rft_id=info:pmid/27956208&rft_els_id=S1053811916307194&rfr_iscdi=true