Anatomical evidence for functional diversity in the mesencephalic locomotor region of primates
The mesencephalic locomotor region (MLR) is a highly preserved brainstem structure in vertebrates. The MLR performs a crucial role in locomotion but also controls various other functions such as sleep, attention, and even emotion. The MLR comprises the pedunculopontine (PPN) and cuneiform nuclei (Cu...
Gespeichert in:
Veröffentlicht in: | NeuroImage (Orlando, Fla.) Fla.), 2017-02, Vol.147, p.66-78 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 78 |
---|---|
container_issue | |
container_start_page | 66 |
container_title | NeuroImage (Orlando, Fla.) |
container_volume | 147 |
creator | Sébille, Sophie B. Belaid, Hayat Philippe, Anne-Charlotte André, Arthur Lau, Brian François, Chantal Karachi, Carine Bardinet, Eric |
description | The mesencephalic locomotor region (MLR) is a highly preserved brainstem structure in vertebrates. The MLR performs a crucial role in locomotion but also controls various other functions such as sleep, attention, and even emotion. The MLR comprises the pedunculopontine (PPN) and cuneiform nuclei (CuN) but their specific roles are still unknown in primates. Here, we sought to characterise the inputs and outputs of the PPN and CuN to and from the basal ganglia, thalamus, amygdala and cortex, with a specific interest in identifying functional anatomical territories. For this purpose, we used tract-tracing techniques in monkeys and diffusion weighted imaging-based tractography in humans to understand structural connectivity. We found that MLR connections are broadly similar between monkeys and humans. The PPN projects to the sensorimotor, associative and limbic territories of the basal ganglia nuclei, the centre median-parafascicular thalamic nuclei and the central nucleus of the amygdala. The PPN receives motor cortical inputs and less abundant connections from the associative and limbic cortices. In monkeys, we found a stronger connection between the anterior PPN and motor cortex suggesting a topographical organisation of this specific projection. The CuN projected to similar cerebral structures to the PPN in both species. However, these projections were much stronger towards the limbic territories of the basal ganglia and thalamus, to the basal forebrain (extended amygdala) and the central nucleus of the amygdala, suggesting that the CuN is not primarily a motor structure. Our findings highlight the fact that the PPN integrates sensorimotor, cognitive and emotional information whereas the CuN participates in a more restricted network integrating predominantly emotional information.
•Investigating MLR functional connectivity in primates.•Tract tracing experiments in monkeys.•Diffusion-weighted imaging based tractography in humans.•The PPN integrates sensorimotor, cognitive and emotional information.•The CuN integrates predominantly emotional information. |
doi_str_mv | 10.1016/j.neuroimage.2016.12.011 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1851283911</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1053811916307194</els_id><sourcerecordid>1851283911</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-7c0b1c4de133677929370c39492ae008e6cd9121405cd61505b7c98331fbcbfc3</originalsourceid><addsrcrecordid>eNqFkUtv1TAQhS0Eoi_-ArLEhk3CjJ2HvSwVUKRK3ZRtrcSZtL5K4ovtXKn_Hqe3gMSGla3Rd3w85zDGEUoEbD7tyoXW4N3cPVAp8qREUQLiK3aKoOtC1614vd1rWShEfcLOYtwBgMZKvWUnotV1I0CdsvvLpUt-drabOB3cQIslPvrAx3Wxyfklzwd3oBBdeuJu4emR-Exx4_aP3eQsn7z1s09ZE-ghK7gf-T7kvyWKF-zN2E2R3r2c5-zH1y93V9fFze2371eXN4WtQKSitdCjrQZCKZu21ULLFqzUlRYdAShq7KBRYAW1HRqsoe5bq5WUOPa2H608Zx-P7-6D_7lSTGZ20dI0dQv5NRpUNQolNWJGP_yD7vwa8p4bpRVC1UrIlDpSNvgYA43meaXwZBDM1oHZmb8dmK0Dg8LAs8H7F4O1n2n4I_wdegY-HwHKiRwcBROt2wIdXCCbzODd_11-AZzfnWU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1898104730</pqid></control><display><type>article</type><title>Anatomical evidence for functional diversity in the mesencephalic locomotor region of primates</title><source>ScienceDirect Journals (5 years ago - present)</source><source>ProQuest Central UK/Ireland</source><creator>Sébille, Sophie B. ; Belaid, Hayat ; Philippe, Anne-Charlotte ; André, Arthur ; Lau, Brian ; François, Chantal ; Karachi, Carine ; Bardinet, Eric</creator><creatorcontrib>Sébille, Sophie B. ; Belaid, Hayat ; Philippe, Anne-Charlotte ; André, Arthur ; Lau, Brian ; François, Chantal ; Karachi, Carine ; Bardinet, Eric</creatorcontrib><description>The mesencephalic locomotor region (MLR) is a highly preserved brainstem structure in vertebrates. The MLR performs a crucial role in locomotion but also controls various other functions such as sleep, attention, and even emotion. The MLR comprises the pedunculopontine (PPN) and cuneiform nuclei (CuN) but their specific roles are still unknown in primates. Here, we sought to characterise the inputs and outputs of the PPN and CuN to and from the basal ganglia, thalamus, amygdala and cortex, with a specific interest in identifying functional anatomical territories. For this purpose, we used tract-tracing techniques in monkeys and diffusion weighted imaging-based tractography in humans to understand structural connectivity. We found that MLR connections are broadly similar between monkeys and humans. The PPN projects to the sensorimotor, associative and limbic territories of the basal ganglia nuclei, the centre median-parafascicular thalamic nuclei and the central nucleus of the amygdala. The PPN receives motor cortical inputs and less abundant connections from the associative and limbic cortices. In monkeys, we found a stronger connection between the anterior PPN and motor cortex suggesting a topographical organisation of this specific projection. The CuN projected to similar cerebral structures to the PPN in both species. However, these projections were much stronger towards the limbic territories of the basal ganglia and thalamus, to the basal forebrain (extended amygdala) and the central nucleus of the amygdala, suggesting that the CuN is not primarily a motor structure. Our findings highlight the fact that the PPN integrates sensorimotor, cognitive and emotional information whereas the CuN participates in a more restricted network integrating predominantly emotional information.
•Investigating MLR functional connectivity in primates.•Tract tracing experiments in monkeys.•Diffusion-weighted imaging based tractography in humans.•The PPN integrates sensorimotor, cognitive and emotional information.•The CuN integrates predominantly emotional information.</description><identifier>ISSN: 1053-8119</identifier><identifier>EISSN: 1095-9572</identifier><identifier>DOI: 10.1016/j.neuroimage.2016.12.011</identifier><identifier>PMID: 27956208</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Amygdala ; Animal cognition ; Basal forebrain ; Basal ganglia ; Brain stem ; Cognitive ability ; Cortex (motor) ; Cuneiform nucleus ; Emotions ; Experiments ; Forebrain ; Human ; Laboratory animals ; Locomotion ; Monkey ; Monkeys ; Motor task performance ; Neuroimaging ; Neurosciences ; Parafascicular nucleus ; Pedunculopontine nucleus ; Primates ; Sensorimotor system ; Sleep ; Thalamic nuclei ; Thalamus ; Tract tracing ; Tractography ; Vertebrates</subject><ispartof>NeuroImage (Orlando, Fla.), 2017-02, Vol.147, p.66-78</ispartof><rights>2016 Elsevier Inc.</rights><rights>Copyright © 2016 Elsevier Inc. All rights reserved.</rights><rights>Copyright Elsevier Limited Feb 15, 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-7c0b1c4de133677929370c39492ae008e6cd9121405cd61505b7c98331fbcbfc3</citedby><cites>FETCH-LOGICAL-c402t-7c0b1c4de133677929370c39492ae008e6cd9121405cd61505b7c98331fbcbfc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1898104730?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,3541,27915,27916,45986,64374,64376,64378,72230</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27956208$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sébille, Sophie B.</creatorcontrib><creatorcontrib>Belaid, Hayat</creatorcontrib><creatorcontrib>Philippe, Anne-Charlotte</creatorcontrib><creatorcontrib>André, Arthur</creatorcontrib><creatorcontrib>Lau, Brian</creatorcontrib><creatorcontrib>François, Chantal</creatorcontrib><creatorcontrib>Karachi, Carine</creatorcontrib><creatorcontrib>Bardinet, Eric</creatorcontrib><title>Anatomical evidence for functional diversity in the mesencephalic locomotor region of primates</title><title>NeuroImage (Orlando, Fla.)</title><addtitle>Neuroimage</addtitle><description>The mesencephalic locomotor region (MLR) is a highly preserved brainstem structure in vertebrates. The MLR performs a crucial role in locomotion but also controls various other functions such as sleep, attention, and even emotion. The MLR comprises the pedunculopontine (PPN) and cuneiform nuclei (CuN) but their specific roles are still unknown in primates. Here, we sought to characterise the inputs and outputs of the PPN and CuN to and from the basal ganglia, thalamus, amygdala and cortex, with a specific interest in identifying functional anatomical territories. For this purpose, we used tract-tracing techniques in monkeys and diffusion weighted imaging-based tractography in humans to understand structural connectivity. We found that MLR connections are broadly similar between monkeys and humans. The PPN projects to the sensorimotor, associative and limbic territories of the basal ganglia nuclei, the centre median-parafascicular thalamic nuclei and the central nucleus of the amygdala. The PPN receives motor cortical inputs and less abundant connections from the associative and limbic cortices. In monkeys, we found a stronger connection between the anterior PPN and motor cortex suggesting a topographical organisation of this specific projection. The CuN projected to similar cerebral structures to the PPN in both species. However, these projections were much stronger towards the limbic territories of the basal ganglia and thalamus, to the basal forebrain (extended amygdala) and the central nucleus of the amygdala, suggesting that the CuN is not primarily a motor structure. Our findings highlight the fact that the PPN integrates sensorimotor, cognitive and emotional information whereas the CuN participates in a more restricted network integrating predominantly emotional information.
•Investigating MLR functional connectivity in primates.•Tract tracing experiments in monkeys.•Diffusion-weighted imaging based tractography in humans.•The PPN integrates sensorimotor, cognitive and emotional information.•The CuN integrates predominantly emotional information.</description><subject>Amygdala</subject><subject>Animal cognition</subject><subject>Basal forebrain</subject><subject>Basal ganglia</subject><subject>Brain stem</subject><subject>Cognitive ability</subject><subject>Cortex (motor)</subject><subject>Cuneiform nucleus</subject><subject>Emotions</subject><subject>Experiments</subject><subject>Forebrain</subject><subject>Human</subject><subject>Laboratory animals</subject><subject>Locomotion</subject><subject>Monkey</subject><subject>Monkeys</subject><subject>Motor task performance</subject><subject>Neuroimaging</subject><subject>Neurosciences</subject><subject>Parafascicular nucleus</subject><subject>Pedunculopontine nucleus</subject><subject>Primates</subject><subject>Sensorimotor system</subject><subject>Sleep</subject><subject>Thalamic nuclei</subject><subject>Thalamus</subject><subject>Tract tracing</subject><subject>Tractography</subject><subject>Vertebrates</subject><issn>1053-8119</issn><issn>1095-9572</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkUtv1TAQhS0Eoi_-ArLEhk3CjJ2HvSwVUKRK3ZRtrcSZtL5K4ovtXKn_Hqe3gMSGla3Rd3w85zDGEUoEbD7tyoXW4N3cPVAp8qREUQLiK3aKoOtC1614vd1rWShEfcLOYtwBgMZKvWUnotV1I0CdsvvLpUt-drabOB3cQIslPvrAx3Wxyfklzwd3oBBdeuJu4emR-Exx4_aP3eQsn7z1s09ZE-ghK7gf-T7kvyWKF-zN2E2R3r2c5-zH1y93V9fFze2371eXN4WtQKSitdCjrQZCKZu21ULLFqzUlRYdAShq7KBRYAW1HRqsoe5bq5WUOPa2H608Zx-P7-6D_7lSTGZ20dI0dQv5NRpUNQolNWJGP_yD7vwa8p4bpRVC1UrIlDpSNvgYA43meaXwZBDM1oHZmb8dmK0Dg8LAs8H7F4O1n2n4I_wdegY-HwHKiRwcBROt2wIdXCCbzODd_11-AZzfnWU</recordid><startdate>20170215</startdate><enddate>20170215</enddate><creator>Sébille, Sophie B.</creator><creator>Belaid, Hayat</creator><creator>Philippe, Anne-Charlotte</creator><creator>André, Arthur</creator><creator>Lau, Brian</creator><creator>François, Chantal</creator><creator>Karachi, Carine</creator><creator>Bardinet, Eric</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20170215</creationdate><title>Anatomical evidence for functional diversity in the mesencephalic locomotor region of primates</title><author>Sébille, Sophie B. ; Belaid, Hayat ; Philippe, Anne-Charlotte ; André, Arthur ; Lau, Brian ; François, Chantal ; Karachi, Carine ; Bardinet, Eric</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-7c0b1c4de133677929370c39492ae008e6cd9121405cd61505b7c98331fbcbfc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Amygdala</topic><topic>Animal cognition</topic><topic>Basal forebrain</topic><topic>Basal ganglia</topic><topic>Brain stem</topic><topic>Cognitive ability</topic><topic>Cortex (motor)</topic><topic>Cuneiform nucleus</topic><topic>Emotions</topic><topic>Experiments</topic><topic>Forebrain</topic><topic>Human</topic><topic>Laboratory animals</topic><topic>Locomotion</topic><topic>Monkey</topic><topic>Monkeys</topic><topic>Motor task performance</topic><topic>Neuroimaging</topic><topic>Neurosciences</topic><topic>Parafascicular nucleus</topic><topic>Pedunculopontine nucleus</topic><topic>Primates</topic><topic>Sensorimotor system</topic><topic>Sleep</topic><topic>Thalamic nuclei</topic><topic>Thalamus</topic><topic>Tract tracing</topic><topic>Tractography</topic><topic>Vertebrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sébille, Sophie B.</creatorcontrib><creatorcontrib>Belaid, Hayat</creatorcontrib><creatorcontrib>Philippe, Anne-Charlotte</creatorcontrib><creatorcontrib>André, Arthur</creatorcontrib><creatorcontrib>Lau, Brian</creatorcontrib><creatorcontrib>François, Chantal</creatorcontrib><creatorcontrib>Karachi, Carine</creatorcontrib><creatorcontrib>Bardinet, Eric</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>NeuroImage (Orlando, Fla.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sébille, Sophie B.</au><au>Belaid, Hayat</au><au>Philippe, Anne-Charlotte</au><au>André, Arthur</au><au>Lau, Brian</au><au>François, Chantal</au><au>Karachi, Carine</au><au>Bardinet, Eric</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anatomical evidence for functional diversity in the mesencephalic locomotor region of primates</atitle><jtitle>NeuroImage (Orlando, Fla.)</jtitle><addtitle>Neuroimage</addtitle><date>2017-02-15</date><risdate>2017</risdate><volume>147</volume><spage>66</spage><epage>78</epage><pages>66-78</pages><issn>1053-8119</issn><eissn>1095-9572</eissn><abstract>The mesencephalic locomotor region (MLR) is a highly preserved brainstem structure in vertebrates. The MLR performs a crucial role in locomotion but also controls various other functions such as sleep, attention, and even emotion. The MLR comprises the pedunculopontine (PPN) and cuneiform nuclei (CuN) but their specific roles are still unknown in primates. Here, we sought to characterise the inputs and outputs of the PPN and CuN to and from the basal ganglia, thalamus, amygdala and cortex, with a specific interest in identifying functional anatomical territories. For this purpose, we used tract-tracing techniques in monkeys and diffusion weighted imaging-based tractography in humans to understand structural connectivity. We found that MLR connections are broadly similar between monkeys and humans. The PPN projects to the sensorimotor, associative and limbic territories of the basal ganglia nuclei, the centre median-parafascicular thalamic nuclei and the central nucleus of the amygdala. The PPN receives motor cortical inputs and less abundant connections from the associative and limbic cortices. In monkeys, we found a stronger connection between the anterior PPN and motor cortex suggesting a topographical organisation of this specific projection. The CuN projected to similar cerebral structures to the PPN in both species. However, these projections were much stronger towards the limbic territories of the basal ganglia and thalamus, to the basal forebrain (extended amygdala) and the central nucleus of the amygdala, suggesting that the CuN is not primarily a motor structure. Our findings highlight the fact that the PPN integrates sensorimotor, cognitive and emotional information whereas the CuN participates in a more restricted network integrating predominantly emotional information.
•Investigating MLR functional connectivity in primates.•Tract tracing experiments in monkeys.•Diffusion-weighted imaging based tractography in humans.•The PPN integrates sensorimotor, cognitive and emotional information.•The CuN integrates predominantly emotional information.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>27956208</pmid><doi>10.1016/j.neuroimage.2016.12.011</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1053-8119 |
ispartof | NeuroImage (Orlando, Fla.), 2017-02, Vol.147, p.66-78 |
issn | 1053-8119 1095-9572 |
language | eng |
recordid | cdi_proquest_miscellaneous_1851283911 |
source | ScienceDirect Journals (5 years ago - present); ProQuest Central UK/Ireland |
subjects | Amygdala Animal cognition Basal forebrain Basal ganglia Brain stem Cognitive ability Cortex (motor) Cuneiform nucleus Emotions Experiments Forebrain Human Laboratory animals Locomotion Monkey Monkeys Motor task performance Neuroimaging Neurosciences Parafascicular nucleus Pedunculopontine nucleus Primates Sensorimotor system Sleep Thalamic nuclei Thalamus Tract tracing Tractography Vertebrates |
title | Anatomical evidence for functional diversity in the mesencephalic locomotor region of primates |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T04%3A46%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anatomical%20evidence%20for%20functional%20diversity%20in%20the%20mesencephalic%20locomotor%20region%20of%20primates&rft.jtitle=NeuroImage%20(Orlando,%20Fla.)&rft.au=S%C3%A9bille,%20Sophie%20B.&rft.date=2017-02-15&rft.volume=147&rft.spage=66&rft.epage=78&rft.pages=66-78&rft.issn=1053-8119&rft.eissn=1095-9572&rft_id=info:doi/10.1016/j.neuroimage.2016.12.011&rft_dat=%3Cproquest_cross%3E1851283911%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1898104730&rft_id=info:pmid/27956208&rft_els_id=S1053811916307194&rfr_iscdi=true |