Spatial Fuzzy C Means and Expectation Maximization Algorithms with Bias Correction for Segmentation of MR Brain Images

The Fuzzy C Means (FCM) and Expectation Maximization (EM) algorithms are the most prevalent methods for automatic segmentation of MR brain images into three classes Gray Matter (GM), White Matter (WM) and Cerebrospinal Fluid (CSF). The major difficulties associated with these conventional methods fo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of medical systems 2017, Vol.41 (1), p.15-15, Article 15
Hauptverfasser: Meena Prakash, R., Shantha Selva Kumari, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15
container_issue 1
container_start_page 15
container_title Journal of medical systems
container_volume 41
creator Meena Prakash, R.
Shantha Selva Kumari, R.
description The Fuzzy C Means (FCM) and Expectation Maximization (EM) algorithms are the most prevalent methods for automatic segmentation of MR brain images into three classes Gray Matter (GM), White Matter (WM) and Cerebrospinal Fluid (CSF). The major difficulties associated with these conventional methods for MR brain image segmentation are the Intensity Non-uniformity (INU) and noise. In this paper, EM and FCM with spatial information and bias correction are proposed to overcome these effects. The spatial information is incorporated by convolving the posterior probability during E-Step of the EM algorithm with mean filter. Also, a method of pixel re-labeling is included to improve the segmentation accuracy. The proposed method is validated by extensive experiments on both simulated and real brain images from standard database. Quantitative and qualitative results depict that the method is superior to the conventional methods by around 25% and over the state-of-the art method by 8%.
doi_str_mv 10.1007/s10916-016-0662-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1851282227</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1851282227</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-10a8d550012112984b52a7f103073da75301a759746a7e4e3b38b1589bb04ac73</originalsourceid><addsrcrecordid>eNp1kVtr3DAQhUVpaDbb_IC-BEFf8uJ0RrIs6TFZcoMsgSSFvBnZK28dbGsj2bnsr6-MN6UUKhiNxPnmSHAI-YZwggDyR0DQmCUwVpaxRH4iMxSSJ5nSj5_JDDBViRBa7ZODEJ4AQGeZ_EL2mYwH0HxGXu43pq9NQy-G7fadLujSmi5Q063o-dvGln1UXUeX5q1u6-10OW3Wztf9rzbQ19joWW0CXTjvIz7qlfP03q5b2-2mXUWXd_TMm7qj161Z2_CV7FWmCfZw1-fk58X5w-Iqubm9vF6c3iQll6xPEIxaCQGADJFplRaCGVkhcJB8ZaTggHHXMs2MtKnlBVcFCqWLAlJTSj4nx5PvxrvnwYY-b-tQ2qYxnXVDyFEJZIoxNqLf_0Gf3OC7-LtIpQq04nHNCU5U6V0I3lb5xtet8e85Qj6Gkk-h5DBWDCUfnY92zkPR2tWfiY8UIsAmIESpW1v_19P_df0N-2WV3A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1848098333</pqid></control><display><type>article</type><title>Spatial Fuzzy C Means and Expectation Maximization Algorithms with Bias Correction for Segmentation of MR Brain Images</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Meena Prakash, R. ; Shantha Selva Kumari, R.</creator><creatorcontrib>Meena Prakash, R. ; Shantha Selva Kumari, R.</creatorcontrib><description>The Fuzzy C Means (FCM) and Expectation Maximization (EM) algorithms are the most prevalent methods for automatic segmentation of MR brain images into three classes Gray Matter (GM), White Matter (WM) and Cerebrospinal Fluid (CSF). The major difficulties associated with these conventional methods for MR brain image segmentation are the Intensity Non-uniformity (INU) and noise. In this paper, EM and FCM with spatial information and bias correction are proposed to overcome these effects. The spatial information is incorporated by convolving the posterior probability during E-Step of the EM algorithm with mean filter. Also, a method of pixel re-labeling is included to improve the segmentation accuracy. The proposed method is validated by extensive experiments on both simulated and real brain images from standard database. Quantitative and qualitative results depict that the method is superior to the conventional methods by around 25% and over the state-of-the art method by 8%.</description><identifier>ISSN: 0148-5598</identifier><identifier>EISSN: 1573-689X</identifier><identifier>DOI: 10.1007/s10916-016-0662-7</identifier><identifier>PMID: 27966093</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Accuracy ; Algorithms ; Bias ; Brain - diagnostic imaging ; Cerebrospinal fluid ; Emerging Technologies for Connected Health ; Engineering ; Fuzzy Logic ; Health Informatics ; Health Sciences ; Humans ; Image &amp; Signal Processing ; Image Processing, Computer-Assisted - methods ; Labeling ; Magnetic Resonance Imaging - methods ; Medicine ; Medicine &amp; Public Health ; Methods ; Neuroimaging ; Signal processing ; Statistics for Life Sciences</subject><ispartof>Journal of medical systems, 2017, Vol.41 (1), p.15-15, Article 15</ispartof><rights>Springer Science+Business Media New York 2016</rights><rights>Journal of Medical Systems is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-10a8d550012112984b52a7f103073da75301a759746a7e4e3b38b1589bb04ac73</citedby><cites>FETCH-LOGICAL-c372t-10a8d550012112984b52a7f103073da75301a759746a7e4e3b38b1589bb04ac73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10916-016-0662-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10916-016-0662-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27966093$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Meena Prakash, R.</creatorcontrib><creatorcontrib>Shantha Selva Kumari, R.</creatorcontrib><title>Spatial Fuzzy C Means and Expectation Maximization Algorithms with Bias Correction for Segmentation of MR Brain Images</title><title>Journal of medical systems</title><addtitle>J Med Syst</addtitle><addtitle>J Med Syst</addtitle><description>The Fuzzy C Means (FCM) and Expectation Maximization (EM) algorithms are the most prevalent methods for automatic segmentation of MR brain images into three classes Gray Matter (GM), White Matter (WM) and Cerebrospinal Fluid (CSF). The major difficulties associated with these conventional methods for MR brain image segmentation are the Intensity Non-uniformity (INU) and noise. In this paper, EM and FCM with spatial information and bias correction are proposed to overcome these effects. The spatial information is incorporated by convolving the posterior probability during E-Step of the EM algorithm with mean filter. Also, a method of pixel re-labeling is included to improve the segmentation accuracy. The proposed method is validated by extensive experiments on both simulated and real brain images from standard database. Quantitative and qualitative results depict that the method is superior to the conventional methods by around 25% and over the state-of-the art method by 8%.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Bias</subject><subject>Brain - diagnostic imaging</subject><subject>Cerebrospinal fluid</subject><subject>Emerging Technologies for Connected Health</subject><subject>Engineering</subject><subject>Fuzzy Logic</subject><subject>Health Informatics</subject><subject>Health Sciences</subject><subject>Humans</subject><subject>Image &amp; Signal Processing</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Labeling</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Methods</subject><subject>Neuroimaging</subject><subject>Signal processing</subject><subject>Statistics for Life Sciences</subject><issn>0148-5598</issn><issn>1573-689X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kVtr3DAQhUVpaDbb_IC-BEFf8uJ0RrIs6TFZcoMsgSSFvBnZK28dbGsj2bnsr6-MN6UUKhiNxPnmSHAI-YZwggDyR0DQmCUwVpaxRH4iMxSSJ5nSj5_JDDBViRBa7ZODEJ4AQGeZ_EL2mYwH0HxGXu43pq9NQy-G7fadLujSmi5Q063o-dvGln1UXUeX5q1u6-10OW3Wztf9rzbQ19joWW0CXTjvIz7qlfP03q5b2-2mXUWXd_TMm7qj161Z2_CV7FWmCfZw1-fk58X5w-Iqubm9vF6c3iQll6xPEIxaCQGADJFplRaCGVkhcJB8ZaTggHHXMs2MtKnlBVcFCqWLAlJTSj4nx5PvxrvnwYY-b-tQ2qYxnXVDyFEJZIoxNqLf_0Gf3OC7-LtIpQq04nHNCU5U6V0I3lb5xtet8e85Qj6Gkk-h5DBWDCUfnY92zkPR2tWfiY8UIsAmIESpW1v_19P_df0N-2WV3A</recordid><startdate>2017</startdate><enddate>2017</enddate><creator>Meena Prakash, R.</creator><creator>Shantha Selva Kumari, R.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7RV</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88C</scope><scope>88E</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>KB0</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M0S</scope><scope>M0T</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>2017</creationdate><title>Spatial Fuzzy C Means and Expectation Maximization Algorithms with Bias Correction for Segmentation of MR Brain Images</title><author>Meena Prakash, R. ; Shantha Selva Kumari, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-10a8d550012112984b52a7f103073da75301a759746a7e4e3b38b1589bb04ac73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Bias</topic><topic>Brain - diagnostic imaging</topic><topic>Cerebrospinal fluid</topic><topic>Emerging Technologies for Connected Health</topic><topic>Engineering</topic><topic>Fuzzy Logic</topic><topic>Health Informatics</topic><topic>Health Sciences</topic><topic>Humans</topic><topic>Image &amp; Signal Processing</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Labeling</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Methods</topic><topic>Neuroimaging</topic><topic>Signal processing</topic><topic>Statistics for Life Sciences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meena Prakash, R.</creatorcontrib><creatorcontrib>Shantha Selva Kumari, R.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Healthcare Administration Database (Alumni)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Healthcare Administration Database</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of medical systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meena Prakash, R.</au><au>Shantha Selva Kumari, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatial Fuzzy C Means and Expectation Maximization Algorithms with Bias Correction for Segmentation of MR Brain Images</atitle><jtitle>Journal of medical systems</jtitle><stitle>J Med Syst</stitle><addtitle>J Med Syst</addtitle><date>2017</date><risdate>2017</risdate><volume>41</volume><issue>1</issue><spage>15</spage><epage>15</epage><pages>15-15</pages><artnum>15</artnum><issn>0148-5598</issn><eissn>1573-689X</eissn><abstract>The Fuzzy C Means (FCM) and Expectation Maximization (EM) algorithms are the most prevalent methods for automatic segmentation of MR brain images into three classes Gray Matter (GM), White Matter (WM) and Cerebrospinal Fluid (CSF). The major difficulties associated with these conventional methods for MR brain image segmentation are the Intensity Non-uniformity (INU) and noise. In this paper, EM and FCM with spatial information and bias correction are proposed to overcome these effects. The spatial information is incorporated by convolving the posterior probability during E-Step of the EM algorithm with mean filter. Also, a method of pixel re-labeling is included to improve the segmentation accuracy. The proposed method is validated by extensive experiments on both simulated and real brain images from standard database. Quantitative and qualitative results depict that the method is superior to the conventional methods by around 25% and over the state-of-the art method by 8%.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>27966093</pmid><doi>10.1007/s10916-016-0662-7</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0148-5598
ispartof Journal of medical systems, 2017, Vol.41 (1), p.15-15, Article 15
issn 0148-5598
1573-689X
language eng
recordid cdi_proquest_miscellaneous_1851282227
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Accuracy
Algorithms
Bias
Brain - diagnostic imaging
Cerebrospinal fluid
Emerging Technologies for Connected Health
Engineering
Fuzzy Logic
Health Informatics
Health Sciences
Humans
Image & Signal Processing
Image Processing, Computer-Assisted - methods
Labeling
Magnetic Resonance Imaging - methods
Medicine
Medicine & Public Health
Methods
Neuroimaging
Signal processing
Statistics for Life Sciences
title Spatial Fuzzy C Means and Expectation Maximization Algorithms with Bias Correction for Segmentation of MR Brain Images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T11%3A28%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatial%20Fuzzy%20C%20Means%20and%20Expectation%20Maximization%20Algorithms%20with%20Bias%20Correction%20for%20Segmentation%20of%20MR%20Brain%20Images&rft.jtitle=Journal%20of%20medical%20systems&rft.au=Meena%20Prakash,%20R.&rft.date=2017&rft.volume=41&rft.issue=1&rft.spage=15&rft.epage=15&rft.pages=15-15&rft.artnum=15&rft.issn=0148-5598&rft.eissn=1573-689X&rft_id=info:doi/10.1007/s10916-016-0662-7&rft_dat=%3Cproquest_cross%3E1851282227%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1848098333&rft_id=info:pmid/27966093&rfr_iscdi=true